论文标题

雷曼方法的概括

A Generalization of Lehman's Method

论文作者

Hales, Jonathon, Hiary, Ghaith

论文摘要

提出了一种新的确定性算法,用于查找方形除数,并发现找到$ r $ $ $ $的除数。该算法基于Lehman的整数分解方法,并且很容易实现。尽管新算法的理论复杂性远非最著名的,但即使是在正方形的束缚上,算法也变得特别有效。此外,我们回答了D. Harvey和M. Hittmeir的一个问题,即他们最近的确定性算法是否可以适应$ r $ $ $ - 权力的除数。

A new deterministic algorithm for finding square divisors, and finding $r$-power divisors in general, is presented. This algorithm is based on Lehman's method for integer factorization and is straightforward to implement. While the theoretical complexity of the new algorithm is far from best known, the algorithm becomes especially effective if even a loose bound on a square divisor is known. Additionally, we answer a question by D. Harvey and M. Hittmeir on whether their recent deterministic algorithm for integer factorization can be adapted to finding $r$-power divisors.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源