论文标题

一种计算方法,用于说明液膜厚度演变的直接数值模拟,预填充了Airblast雾化

A computational methodology to account for the liquid film thickness evolution in Direct Numerical Simulation of prefilming airblast atomization

论文作者

Payri, R., Salvador, F. J., Carreres, M., Moreno-Montagud, C.

论文摘要

预填充的Airblast雾化被广泛用于航空发动机。难以实现有关Airblast雾化器环形雾化器环形配置的基本研究。因此,研究人员专注于平面配置。在这方面,Karlsruhe技术研究所(KIT)开发了一项测试钻机来进行实验活动,使一个大数据库与不同条件的结果符合。这样的数据允许验证有关这些设备上主要雾化的两相流量计算。本研究提出了通过巴黎代码中的流体(VOF)方法的套件平面配置上的直接数值模拟(DNS)。与文献报道的DNS相比,新颖性不仅在于使用边界条件,该条件不仅说明了气体流入湍流,还考虑了DNS入口处液体膜厚度的时空演化及其对湍流的影响。所提出的方法需要计算前体单相和两相流量大型模拟。将结果与DNS进行比较,DNS仅解释了域入口处的恒定(时间和跨度)液体膜厚度,从而验证了工作流程。所提出的方法改善了分解机制的定性描述,因为它的不同阶段(前闪光边缘后面的液体积累,袋形成,袋子破裂,韧带形成和韧带破裂)在给定的时间快照中共存。这意味着比恒定膜厚度案例所预测的更连续雾化,该雾化表现出了相同的分裂阶段,沿着预闪存跨度存在,并导致了一组更具离散化的雾化事件。所提出的工作流程允许量化前填料上方液体膜流动进化对主要分解频率和雾化特征的影响。

Prefilming airblast atomization is widely used in aero engines. Fundamental studies on the annular configuration of airblast atomizers are difficult to realize. For this reason, researchers focused on planar configurations. In this regard, the Karlsruhe Institute of Technology (KIT) developed a test rig to conduct experimental activities, conforming a large database with results for different conditions. Such data allow validation of two-phase flow calculations concerning primary atomization on these devices. The present investigation proposes a Direct Numerical Simulation (DNS) on the KIT planar configuration through the Volume of Fluid (VOF) method within the PARIS code. The novelty compared to DNS reported in the literature resides in the use of a boundary condition that accounts not only for the gas inflow turbulence but also for the spatio-temporal evolution of the liquid film thickness at the DNS inlet and its effect on turbulence. The proposed methodology requires computing precursor single-phase and two-phase flow Large-Eddy Simulations. Results are compared to DNS that only account for a constant (both timewise and spanwise) liquid film thickness at the domain inlet, validating the workflow. The proposed methodology improves the qualitative description of the breakup mechanism, as its different stages (liquid accumulation behind the prefilmer edge, bag formation, bag breakup, ligament formation and ligament breakup) coexist spanwise for a given temporal snapshot. This implies more continuous atomization than the one predicted by the constant film thickness case, which showed the same breakup stage to be present along the prefilmer span for a given instant and led to a more discretized set of atomization events. The proposed workflow allows quantifying the influence of the liquid film flow evolution above the prefilmer on primary breakup frequency and atomization features.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源