论文标题
DeepAdjoint:一个多功能光子逆设计框架,将数据驱动的机器学习与优化算法集成
DeepAdjoint: An All-in-One Photonic Inverse Design Framework Integrating Data-Driven Machine Learning with Optimization Algorithms
论文作者
论文摘要
近年来,将机器学习(ML)与电磁优化算法相结合的混合设计策略已成为光子结构和设备的逆设计的新范式。虽然受过训练的,数据驱动的神经网络可以通过给定数据集的设计空间迅速识别全局最佳的解决方案,但迭代优化算法可以进一步完善解决方案并克服数据集限制。此外,这种混合ML优化方法可以降低计算成本,并加快发现新型电磁成分的发现。但是,现有的混合ML优化方法尚未在单个集成和用户友好的环境中优化材料和几何形状。此外,由于挑战为ML获取大型数据集以及用于光子学设计的隔离模型的指数增长,因此需要标准化ML优化工作流程,同时使预训练的模型易于访问。在这些挑战的推动下,我们在这里介绍了DeepAdhixhoint,一种通用,开源和多目标的“多合一”全球光子学逆设计应用程序框架,该框架将预先训练的深层生成网络与最先进的电磁优化算法(例如,相邻变量方法)集成在一起。 DeepAdwient允许设计人员指定任意的光学设计目标,然后获得适用于制造公差的光子结构,并具有所需的光学特性 - 均在单个用户指导的应用程序接口内。因此,我们的框架为光子逆设计的ML系统统一和优化算法铺平了一条路径。
In recent years, hybrid design strategies combining machine learning (ML) with electromagnetic optimization algorithms have emerged as a new paradigm for the inverse design of photonic structures and devices. While a trained, data-driven neural network can rapidly identify solutions near the global optimum with a given dataset's design space, an iterative optimization algorithm can further refine the solution and overcome dataset limitations. Furthermore, such hybrid ML-optimization methodologies can reduce computational costs and expedite the discovery of novel electromagnetic components. However, existing hybrid ML-optimization methods have yet to optimize across both materials and geometries in a single integrated and user-friendly environment. In addition, due to the challenge of acquiring large datasets for ML, as well as the exponential growth of isolated models being trained for photonics design, there is a need to standardize the ML-optimization workflow while making the pre-trained models easily accessible. Motivated by these challenges, here we introduce DeepAdjoint, a general-purpose, open-source, and multi-objective "all-in-one" global photonics inverse design application framework which integrates pre-trained deep generative networks with state-of-the-art electromagnetic optimization algorithms such as the adjoint variables method. DeepAdjoint allows a designer to specify an arbitrary optical design target, then obtain a photonic structure that is robust to fabrication tolerances and possesses the desired optical properties - all within a single user-guided application interface. Our framework thus paves a path towards the systematic unification of ML and optimization algorithms for photonic inverse design.