论文标题

天文来源的机器学习分类:在没有地面真相的情况下估算F1得分

Machine-learning classification of astronomical sources: estimating F1-score in the absence of ground truth

论文作者

Humphrey, A., Kuberski, W., Bialek, J., Perrakis, N., Cools, W., Nuyttens, N., Elakhrass, H., Cunha, P. A. C.

论文摘要

基于机器学习的分类器在天体物理学领域已经是必不可少的,可以将天文来源分为各个类别,计算效率适合于现在通常会产生广泛的地区调查的巨大数据量。在标准监督分类范式中,通常使用来自天空相对较小区域的数据对模型进行培训和验证,然后被用于对天空其他区域的来源进行分类。但是,培训示例和要分类的来源之间的人口变化可能会导致模型性能中的“沉默”退化,这可能是具有挑战性的,即确定何时无法获得地面真相。在这封信中,我们使用基于NANNYML置信度的性能估计(CBPE)方法提出了一种新的方法,以预测在存在种群转移的情况下分类器F1得分,但没有地面真相标签。我们将CBPE应用于使用宽带光度法的决策树集合模型的类星体选择,并证明F1分数的预测非常好(Mape〜10%; R^2 = 0.74-0.92)。我们讨论了天文学领域的潜在用例,包括机器学习模型和/或超参数选择,以及评估培训数据集对特定分类问题的适用性。

Machine-learning based classifiers have become indispensable in the field of astrophysics, allowing separation of astronomical sources into various classes, with computational efficiency suitable for application to the enormous data volumes that wide-area surveys now typically produce. In the standard supervised classification paradigm, a model is typically trained and validated using data from relatively small areas of sky, before being used to classify sources in other areas of the sky. However, population shifts between the training examples and the sources to be classified can lead to `silent' degradation in model performance, which can be challenging to identify when the ground-truth is not available. In this Letter, we present a novel methodology using the NannyML Confidence-Based Performance Estimation (CBPE) method to predict classifier F1-score in the presence of population shifts, but without ground-truth labels. We apply CBPE to the selection of quasars with decision-tree ensemble models, using broad-band photometry, and show that the F1-scores are predicted remarkably well (MAPE ~ 10%; R^2 = 0.74-0.92). We discuss potential use-cases in the domain of astronomy, including machine-learning model and/or hyperparameter selection, and evaluation of the suitability of training datasets for a particular classification problem.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源