论文标题

集成因子与具有高空间维度的自由边界的反应扩散系统的水平设定方法结合

Integration factor combined with level set method for reaction-diffusion systems with free boundary in high spatial dimensions

论文作者

Liu, Shuang, Liu, Xinfeng

论文摘要

对于不规则域中的反应扩散方程与移动边界,反应和扩散项的数值稳定性约束通常需要非常限制的时间步长,而复杂的几何形状可能会导致准确性的困难,而在离散边界附近网格点上的高阶衍生品。设计可以有效,准确处理这两个困难的数值方法非常具有挑战性。应用隐式方案可能能够消除时间步骤的稳定性约束,但是,它通常需要在每个时间步骤求解大型的非线性方程式系统,并且计算成本可能很重要。在许多其他方法中,集成因子(如果)或指数差异时间(ETD)方法是时间部分微分方程(PDE)的流行方法之一。在我们的论文中,我们将ETD方法与嵌入式边界方法相结合,以求解具有复杂几何形状的反应扩散方程系统。特别是,我们将所有ETD方案重写为特定ϕ功能的线性组合,并应用一种启动算法来计算矩阵矢量乘法,该矩阵向量乘数通过自适应的Krylov子空间提供了显着的计算优势。此外,我们通过合并级别集方法来解决自由边界问题来扩展此方法。已开发方法的准确性,稳定性和效率通过数值示例证明。

For reaction-diffusion equations in irregular domain with moving boundaries, the numerical stability constraints from the reaction and diffusion terms often require very restricted time step size, while complex geometries may lead to difficulties in accuracy when discretizing the high-order derivatives on grid points near the boundary. It is very challenging to design numerical methods that can efficiently and accurately handle both difficulties. Applying an implicit scheme may be able to remove the stability constraints on the time step, however, it usually requires solving a large global system of nonlinear equations for each time step, and the computational cost could be significant. Integration factor (IF) or exponential differencing time (ETD) methods are one of the popular methods for temporal partial differential equations (PDEs) among many other methods. In our paper, we couple ETD methods with an embedded boundary method to solve a system of reaction-diffusion equations with complex geometries. In particular, we rewrite all ETD schemes into a linear combination of specific ϕ-functions and apply one start-of-the-art algorithm to compute the matrix-vector multiplications, which offers significant computational advantages with adaptive Krylov subspaces. In addition, we extend this method by incorporating the level set method to solve the free boundary problem. The accuracy, stability, and efficiency of the developed method are demonstrated by numerical examples.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源