论文标题

使用多材料提高功率谱估计:有效的星号震中分析,以理解恒星,银河系及以后

Improving Power Spectrum Estimation using Multitapering: Efficient asteroseismic analyses for understanding stars, the Milky Way, and beyond

论文作者

Patil, Aarya A., Eadie, Gwendolyn M., Speagle, Joshua S., Thomson, David J.

论文摘要

Asterosisic Time系列数据具有恒星振荡模式的烙印,其通过时间序列分析的检测和表征使我们能够探测出色的内部物理学。这种分析通常通过计算LOMB-SCARGLE(LS)周期图,这是傅立叶域中发生的,Lomb-Scargle(LS)周期图是不均匀采样的时间序列数据的功率谱的估计器。但是,LS期间图遭受了(1)不一致(或噪声)和(2)由于高光谱泄漏而偏置的统计问题。在这里,我们使用非均匀快速傅立叶变换(MTNUFFT)来开发多底功率谱估计器,以解决LS期间图的不一致和偏差问题。使用模拟的光曲线,我们表明,与LS估计值相比,太阳样振荡的mtnufft功率谱估计值较低。我们还将方法应用于开普勒91红色巨人,并将其与pbjam peakbaggaging结合使用,以获得模式参数,并且年龄估计为$ 3.97 \ pm 0.52 $ gyr。 PBJAM允许相对于$ 4.27 \ pm 0.75 $ gyr apokasc-2(未校正)估算的年龄精度提高,而与PBJAM合作MTNUFFT的速度高达峰值,同时又加速了LS。除了出色的结构和进化研究外,效率的这种提高对银河考古学具有希望。我们的新方法通常适用于时间域天文学,并在公共Python软件包Tapify中实施,可在https://github.com/aaryapatil/tapify中找到。

Asteroseismic time-series data have imprints of stellar oscillation modes, whose detection and characterization through time-series analysis allows us to probe stellar interior physics. Such analyses usually occur in the Fourier domain by computing the Lomb-Scargle (LS) periodogram, an estimator of the power spectrum underlying unevenly-sampled time-series data. However, the LS periodogram suffers from the statistical problems of (1) inconsistency (or noise) and (2) bias due to high spectral leakage. Here, we develop a multitaper power spectrum estimator using the Non-Uniform Fast Fourier Transform (mtNUFFT) to tackle the inconsistency and bias problems of the LS periodogram. Using a simulated light curve, we show that the mtNUFFT power spectrum estimate of solar-like oscillations has lower variance and bias than the LS estimate. We also apply our method to the Kepler-91 red giant, and combine it with PBjam peakbagging to obtain mode parameters and a derived age estimate of $3.97 \pm 0.52$ Gyr. PBjam allows the improvement of age precision relative to the $4.27 \pm 0.75$ Gyr APOKASC-2 (uncorrected) estimate, whereas partnering mtNUFFT with PBjam speeds up peakbagging thrice as much as LS. This increase in efficiency has promising implications for Galactic archaeology, in addition to stellar structure and evolution studies. Our new method generally applies to time-domain astronomy and is implemented in the public Python package tapify, available at https://github.com/aaryapatil/tapify.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源