论文标题
DirectTracker:使用直接图像对齐和光度束调整的3D多对象跟踪
DirectTracker: 3D Multi-Object Tracking Using Direct Image Alignment and Photometric Bundle Adjustment
论文作者
论文摘要
直接方法在视觉探光和大满贯的应用中表现出了出色的性能。在这项工作中,我们建议将其有效性用于3D多对象跟踪的任务。为此,我们提出了DirectTracker,该框架有效地结合了直接跟踪和滑动窗口光度束调节3D对象检测的直接图像对齐。对象建议是根据稀疏滑动窗口cloud估算的,并使用基于优化的成本函数进一步完善,该功能仔细结合了3D和2D提示,以确保图像和世界空间的一致性。我们建议使用最近引入的高阶跟踪准确性(HOTA)度量以及对联合相似性度量的广义交叉点评估3D跟踪,以减轻与联合相交对基于视觉跟踪器进行评估的常规使用交叉点的限制。我们对汽车类的Kitti跟踪基准进行评估,并在2D和3D跟踪对象中表现出竞争性能。
Direct methods have shown excellent performance in the applications of visual odometry and SLAM. In this work we propose to leverage their effectiveness for the task of 3D multi-object tracking. To this end, we propose DirectTracker, a framework that effectively combines direct image alignment for the short-term tracking and sliding-window photometric bundle adjustment for 3D object detection. Object proposals are estimated based on the sparse sliding-window pointcloud and further refined using an optimization-based cost function that carefully combines 3D and 2D cues to ensure consistency in image and world space. We propose to evaluate 3D tracking using the recently introduced higher-order tracking accuracy (HOTA) metric and the generalized intersection over union similarity measure to mitigate the limitations of the conventional use of intersection over union for the evaluation of vision-based trackers. We perform evaluation on the KITTI Tracking benchmark for the Car class and show competitive performance in tracking objects both in 2D and 3D.