论文标题

可解释的虚假新闻检测的粗线级联证据依据的神经网络

A Coarse-to-fine Cascaded Evidence-Distillation Neural Network for Explainable Fake News Detection

论文作者

Yang, Zhiwei, Ma, Jing, Chen, Hechang, Lin, Hongzhan, Luo, Ziyang, Chang, Yi

论文摘要

现有的假新闻检测方法旨在将新闻分类为真或错误,并提供真实的解释,从而实现出色的表现。但是,他们经常根据有限的新闻报道和揭穿延误来定制手动事实检查报告的自动解决方案。如果尚未对事实进行了事实检查或揭穿事实,通常会在各种媒体上传播一定数量的相关原始报告,其中包含人群的智慧来验证新闻主张并解释其判决。在本文中,我们提出了一个新颖的粗到级别的级联证据依据(COFCED)神经网络,以根据此类原始报告来解释假新闻检测,从而减轻了对事实检查的依赖性。具体来说,我们首先使用层次结构编码器来用于Web文本表示,然后开发两个级联的选择器,以粗略到预定的方式在选定的Top-K报告之上选择最可解释的句子。此外,我们构建了两个可解释的假新闻数据集,这些数据集可公开使用。实验结果表明,我们的模型显着胜过最先进的基线,并从各种评估的角度产生高质量的解释。

Existing fake news detection methods aim to classify a piece of news as true or false and provide veracity explanations, achieving remarkable performances. However, they often tailor automated solutions on manual fact-checked reports, suffering from limited news coverage and debunking delays. When a piece of news has not yet been fact-checked or debunked, certain amounts of relevant raw reports are usually disseminated on various media outlets, containing the wisdom of crowds to verify the news claim and explain its verdict. In this paper, we propose a novel Coarse-to-fine Cascaded Evidence-Distillation (CofCED) neural network for explainable fake news detection based on such raw reports, alleviating the dependency on fact-checked ones. Specifically, we first utilize a hierarchical encoder for web text representation, and then develop two cascaded selectors to select the most explainable sentences for verdicts on top of the selected top-K reports in a coarse-to-fine manner. Besides, we construct two explainable fake news datasets, which are publicly available. Experimental results demonstrate that our model significantly outperforms state-of-the-art baselines and generates high-quality explanations from diverse evaluation perspectives.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源