论文标题
关于通过聚合物自洽的田间理论在开放壳原子中自发的球形对称性的起源
On the Origins of Spontaneous Spherical Symmetry-Breaking in Open-Shell Atoms Through Polymer Self-Consistent Field Theory
论文作者
论文摘要
基于环聚合物的自洽场理论的密度功能理论的另一种方法应用于其基态中的中性原子氢与霓虹灯。该模型使用聚合物对电子对之间的聚合物的思想进行了预测,该模型可以预测原子壳结构的自发出现和总电子密度的球形对称性,以实施Pauli-Exclusion原理,并进行了精确的电子自我交互校正。保利电势是近似的,相关性被忽略了,从而与哈特里奇异理论进行了比较,这也忽略了相关性。该模型与Hartree-fock理论的原子结合能和前六个元素的密度曲线显示出极好的一致性,从而为元素和氦气提供了确切的匹配。预测的壳结构开始显着偏离元素霓虹灯,首先预测出在碳而不是硼的球形对称性。描述该模型的自洽场理论能量函数被分解为热力学成分,以追踪球形对称性破坏的起源。发现它是由于电子密度在非球形分布中接近核的电子密度而产生的,尽管量子动能,电子电子相互作用和Pauli排除相互作用,但仍会降低能量。还发现对称效应对结合能的影响最小。两对密度曲线显示出类似于聚合物宏观相分离的行为,其中电子对占据了类似叶片的结构,这些结构相结合在一起,类似于传统的电子轨道。进一步表明,预测的密度满足已知约束,并产生与量子力学预测的相同总电子密度曲线。
An alternative approach to density functional theory based on self-consistent field theory for ring polymers is applied to neutral atoms hydrogen to neon in their ground states. The spontaneous emergence of atomic shell structure and spherical symmetry-breaking of the total electron density is predicted by the model using ideas of polymer excluded-volume between pairs of electrons to enforce the Pauli-exclusion principle, and an exact electron self-interaction correction. The Pauli potential is approximated and correlations are neglected, leading to comparisons with Hartree-Fock theory, which also ignores correlations. The model shows excellent agreement with Hartree-Fock theory for the atomic binding energies and density profiles of the first six elements, providing exact matches for the elements hydrogen and helium. The predicted shell structure starts to deviate significantly past the element neon and spherical symmetry-breaking is first predicted to occur at carbon instead of boron. The self-consistent field theory energy functional which describes the model is decomposed into thermodynamic components to trace the origin of spherical symmetry-breaking. It is found to arise from the electron density approaching closer to the nucleus in non-spherical distributions, which lowers the energy despite resulting in frustration between the quantum kinetic energy, electron-electron interaction, and the Pauli exclusion interaction. The symmetry-breaking effect is also found to have minimal impact on the binding energies. The pair density profiles display behaviour similar to polymer macro-phase separation, where electron pairs occupy lobe-like structures that combined together, resemble traditional electronic orbitals. It is further shown that the predicted densities satisfy known constraints and produce the same total electronic density profile that is predicted by quantum mechanics.