论文标题

带有量子内核的参数化量子电路用于机器学习:一种混合量子式方法

Parameterized Quantum Circuits with Quantum Kernels for Machine Learning: A Hybrid Quantum-Classical Approach

论文作者

Chang, Daniel T.

论文摘要

量子机学习(QML)是使用量子计算来计算机器学习算法的使用。随着经典数据的普遍性和重要性,需要一种混合量子古典方法。参数化的量子电路(PQC),尤其是量子内核PQC,通常用于QML的混合方法中。在本文中,我们讨论了PQC的一些重要方面,其中包括PQC,量子内核,具有量子优势的量子内核以及量子核的训练性。我们得出的结论是,使用混合内核方法的量子核,也就是量子核方法,具有明显的优势作为QML的混合方法。它们不仅适用于嘈杂的中间量子量子(NISQ)设备,而且还可以用于解决所有类型的机器学习问题,包括回归,分类,聚类和降低尺寸。此外,除了量子效用之外,如果量子内核(即量子特征编码)在经典上是棘手的,则可以获得量子优势。

Quantum machine learning (QML) is the use of quantum computing for the computation of machine learning algorithms. With the prevalence and importance of classical data, a hybrid quantum-classical approach to QML is called for. Parameterized Quantum Circuits (PQCs), and particularly Quantum Kernel PQCs, are generally used in the hybrid approach to QML. In this paper we discuss some important aspects of PQCs with quantum kernels including PQCs, quantum kernels, quantum kernels with quantum advantage, and the trainability of quantum kernels. We conclude that quantum kernels with hybrid kernel methods, a.k.a. quantum kernel methods, offer distinct advantages as a hybrid approach to QML. Not only do they apply to Noisy Intermediate-Scale Quantum (NISQ) devices, but they also can be used to solve all types of machine learning problems including regression, classification, clustering, and dimension reduction. Furthermore, beyond quantum utility, quantum advantage can be attained if the quantum kernels, i.e., the quantum feature encodings, are classically intractable.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源