论文标题

使用五角大楼方程进行量子电路

Transpiling Quantum Circuits using the Pentagon Equation

论文作者

Aravanis, Christos, Korpas, Georgios, Marecek, Jakub

论文摘要

我们考虑五角大楼方程在量子电路压缩的上下文中的应用。我们表明,如果找到五角大楼方程的解决方案,则可以将涉及非Heisenberg型相互作用的电路转移到仅涉及Heisenberg-type相互作用的电路,同时同时减小电路的深度。在这种情况下,我们考虑了Zhang \ emph {et的非本地双Quition操作的模型。 al。}($ A $ GATE),并显示某些参数是五角大楼方程的解决方案。

We consider the application of the pentagon equation in the context of quantum circuit compression. We show that if solutions to the pentagon equation are found, one can transpile a circuit involving non-Heisenberg-type interactions to a circuit involving only Heisenberg-type interactions while, in parallel, reducing the depth of a circuit. In this context, we consider a model of non-local two-qubit operations of Zhang \emph{et. al.} (the $A$ gate), and show that for certain parameters it is a solution of the pentagon equation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源