论文标题

顶点代数和大N分解的极限

Limits of Vertex Algebras and Large N Factorization

论文作者

Gemünden, Thomas, Keller, Christoph A.

论文摘要

我们研究了顶点代数的序列。我们讨论在哪个条件下,此类序列的向量空间直接极限再次是顶点代数。然后,我们将此框架应用于顶点操作员代数的置换孔及其较大的N限制。我们确定,对于任何嵌套的寡形置换置换术语,都存在这样的大n极限,并且我们给出了该极限的必要条件。这有助于阐明哪些VOA是物理中全息形成性领域理论的候选者的问题。

We investigate the limit of sequences of vertex algebras. We discuss under what condition the vector space direct limit of such a sequence is again a vertex algebra. We then apply this framework to permutation orbifolds of vertex operator algebras and their large N limit. We establish that for any nested oligomorphic permutation orbifold such a large N limit exists, and we give a necessary and sufficient condition for that limit to factorize. This helps clarify the question of what VOAs are candidates for holographic conformal field theories in physics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源