论文标题

从动力学数据中可靠地学习量子多体汉密尔顿人

Scalably learning quantum many-body Hamiltonians from dynamical data

论文作者

Wilde, Frederik, Kshetrimayum, Augustine, Roth, Ingo, Hangleiter, Dominik, Sweke, Ryan, Eisert, Jens

论文摘要

封闭的量子机械系统的物理学受哈密顿量的约束。但是,在大多数实际情况下,这种哈密顿量尚不清楚,最终所有的数据是从系统上的测量中获得的数据。在这项工作中,我们通过将基于机器学习的基于梯度的优化从机器学习中从张量的网络中从基于梯度的优化中从基于梯度的优化中汇总到汇总基于梯度的优化的技术来学习一种高度可扩展,数据驱动的方法,以学习从动态数据中进行交互的家庭。我们的方法非常实用,实验友好且本质上可扩展,以使系统尺寸超过100次旋转。特别是,我们在综合数据上证明了算法的起作用,即使一个算法仅限于一个简单的初始状态,少量的单量观测和时间演变,直到相对较短的时间。对于一维Heisenberg模型的具体示例,我们的算法在系统大小和缩放的误差常数中是数据集大小的反平方根。

The physics of a closed quantum mechanical system is governed by its Hamiltonian. However, in most practical situations, this Hamiltonian is not precisely known, and ultimately all there is are data obtained from measurements on the system. In this work, we introduce a highly scalable, data-driven approach to learning families of interacting many-body Hamiltonians from dynamical data, by bringing together techniques from gradient-based optimization from machine learning with efficient quantum state representations in terms of tensor networks. Our approach is highly practical, experimentally friendly, and intrinsically scalable to allow for system sizes of above 100 spins. In particular, we demonstrate on synthetic data that the algorithm works even if one is restricted to one simple initial state, a small number of single-qubit observables, and time evolution up to relatively short times. For the concrete example of the one-dimensional Heisenberg model our algorithm exhibits an error constant in the system size and scaling as the inverse square root of the size of the data set.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源