论文标题
仔细观察评估对深神经网络的位纤维攻击
A Closer Look at Evaluating the Bit-Flip Attack Against Deep Neural Networks
论文作者
论文摘要
深度神经网络模型大量部署在各种硬件平台上。这导致了新的攻击向量的出现,这些攻击向量大大扩展了标准攻击表面,这是由对抗机器学习社区广泛研究的。旨在通过瞄准存储在内存中的参数(权重)的第一个旨在极大地降低模型性能的攻击之一是位翼攻击(BFA)。在这项工作中,我们指出了与BFA相关的一些评估挑战。首先,标准威胁模型中缺乏对手的预算是有问题的,尤其是在处理身体攻击时。此外,由于BFA提出了关键的可变性,因此我们讨论了某些培训参数的影响以及模型体系结构的重要性。这项工作是第一个介绍BFA对与卷积神经网络相比呈现不同行为的完全连接体系结构的影响的作品。这些结果强调了定义鲁棒和合理评估方法的重要性,以正确评估基于参数的攻击的危险,并衡量国防提供的实际鲁棒性水平。
Deep neural network models are massively deployed on a wide variety of hardware platforms. This results in the appearance of new attack vectors that significantly extend the standard attack surface, extensively studied by the adversarial machine learning community. One of the first attack that aims at drastically dropping the performance of a model, by targeting its parameters (weights) stored in memory, is the Bit-Flip Attack (BFA). In this work, we point out several evaluation challenges related to the BFA. First of all, the lack of an adversary's budget in the standard threat model is problematic, especially when dealing with physical attacks. Moreover, since the BFA presents critical variability, we discuss the influence of some training parameters and the importance of the model architecture. This work is the first to present the impact of the BFA against fully-connected architectures that present different behaviors compared to convolutional neural networks. These results highlight the importance of defining robust and sound evaluation methodologies to properly evaluate the dangers of parameter-based attacks as well as measure the real level of robustness offered by a defense.