论文标题

全球加权张量核定标准用于张量鲁棒主成分分析

Global Weighted Tensor Nuclear Norm for Tensor Robust Principal Component Analysis

论文作者

Wang, Libin, Wang, Yulong, Wang, Shiyuan, Liu, Youheng, Hu, Yutao, Chen, Longlong, Chen, Hong

论文摘要

张张量强大的主成分分析(TRPCA)旨在恢复因稀疏噪声损坏的低排名张量,在许多实际应用中引起了很多关注。本文开发了一种新的全局加权TRPCA方法(GWTRPCA),该方法是第一种同时考虑额外范围内切片和额叶间切片奇异值的重要性。利用这些全球信息,GWTRPCA惩罚了较大的单数值,并为其分配了较小的权重。因此,我们的方法可以更准确地恢复低管级组件。此外,我们提出了通过改良的考奇估计器(MCE)有效的自适应体重学习策略,因为重量设置在GWTRPCA的成功中起着至关重要的作用。为了实现GWTRPCA方法,我们使用乘数的交替方向方法(ADMM)方法设计了一种优化算法。对现实世界数据集的实验验证了我们提出的方法的有效性。

Tensor Robust Principal Component Analysis (TRPCA), which aims to recover a low-rank tensor corrupted by sparse noise, has attracted much attention in many real applications. This paper develops a new Global Weighted TRPCA method (GWTRPCA), which is the first approach simultaneously considers the significance of intra-frontal slice and inter-frontal slice singular values in the Fourier domain. Exploiting this global information, GWTRPCA penalizes the larger singular values less and assigns smaller weights to them. Hence, our method can recover the low-tubal-rank components more exactly. Moreover, we propose an effective adaptive weight learning strategy by a Modified Cauchy Estimator (MCE) since the weight setting plays a crucial role in the success of GWTRPCA. To implement the GWTRPCA method, we devise an optimization algorithm using an Alternating Direction Method of Multipliers (ADMM) method. Experiments on real-world datasets validate the effectiveness of our proposed method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源