论文标题
Vanilla Transformers的机器翻译任务的有效通用域数据包含
Effective General-Domain Data Inclusion for the Machine Translation Task by Vanilla Transformers
论文作者
论文摘要
机器翻译历史上的重要突破之一是变压器模型的发展。对于各种翻译任务,它不仅是革命性的,而且对于大多数其他NLP任务都是革命性的。在本文中,我们针对一个基于变压器的系统,该系统能够将德语用源句子转换为其英语的对应目标句子。我们对WMT'13数据集的新闻评论德语 - 英语并行句子进行实验。此外,我们研究了在IWSLT'16数据集中包含其他通用域数据以改善变压器模型性能的效果。我们发现,在训练中包括IWSLT'16数据集,有助于在WMT'13数据集的测试集中获得2个BLEU得分点。引入定性分析以分析通用域数据的使用如何有助于提高产生的翻译句子的质量。
One of the vital breakthroughs in the history of machine translation is the development of the Transformer model. Not only it is revolutionary for various translation tasks, but also for a majority of other NLP tasks. In this paper, we aim at a Transformer-based system that is able to translate a source sentence in German to its counterpart target sentence in English. We perform the experiments on the news commentary German-English parallel sentences from the WMT'13 dataset. In addition, we investigate the effect of the inclusion of additional general-domain data in training from the IWSLT'16 dataset to improve the Transformer model performance. We find that including the IWSLT'16 dataset in training helps achieve a gain of 2 BLEU score points on the test set of the WMT'13 dataset. Qualitative analysis is introduced to analyze how the usage of general-domain data helps improve the quality of the produced translation sentences.