论文标题
关于神经网络的视觉分析智能
On the visual analytic intelligence of neural networks
论文作者
论文摘要
视觉奇数任务被认为是对人类的普遍独立的分析智能测试。人工智能的进步导致了重要的突破,但是与人类在此类分析情报任务上竞争仍然具有挑战性,并且通常求助于非生物学上的架构。我们提出了一个具有生物学现实的系统,该系统从合成眼动运动中接收输入 - 扫视,并用结合新皮质神经元动力学的神经元处理它们。我们介绍了一个程序生成的视觉奇数数据集,以训练扩展常规关系网络和我们建议的系统的体系结构。两种方法都超过了人类的准确性,我们发现两者都具有相同的基本推理基本机制。最后,我们表明,具有生物学启发的网络可实现卓越的准确性,学习速度更快,所需的参数比常规网络更少。
Visual oddity task was conceived as a universal ethnic-independent analytic intelligence test for humans. Advancements in artificial intelligence led to important breakthroughs, yet competing with humans on such analytic intelligence tasks remains challenging and typically resorts to non-biologically-plausible architectures. We present a biologically realistic system that receives inputs from synthetic eye movements - saccades, and processes them with neurons incorporating dynamics of neocortical neurons. We introduce a procedurally generated visual oddity dataset to train an architecture extending conventional relational networks and our proposed system. Both approaches surpass the human accuracy, and we uncover that both share the same essential underlying mechanism of reasoning. Finally, we show that the biologically inspired network achieves superior accuracy, learns faster and requires fewer parameters than the conventional network.