论文标题
石墨烯中的温度依赖性零场分裂
Temperature Dependent Zero-Field Splittings in Graphene
论文作者
论文摘要
石墨烯是一种量子自旋大厅绝缘子,具有由固有的自旋轨道耦合引起的45 $ $ EV宽的非平凡拓扑间隙。即使这种零场自旋分裂很弱,但鉴于由此产生的长期旋转松弛时间,石墨烯成为量子技术应用的有吸引力的候选者。另一方面,由于石墨烯与氮化硼底物的偶联而产生的交错的亚晶格电位可以补偿固有的自旋轨耦合并降低非平凡拓扑间隙,这可能导致相位过渡到琐碎的带绝缘体中。在这项工作中,我们通过基于基的基于基于的电子自旋谐振技术在温度范围内单层和双层石墨烯中的零场分布进行了广泛的实验研究。令人惊讶的是,我们观察到随温度升高的自旋分裂的减少。我们通过考虑可能诱导自旋轨道耦合的温度依赖性的可能物理机制来讨论这种现象的起源。这些包括石墨烯与氮化硼基板或金属触点之间的膨胀系数的差异,电子 - 光子相互作用以及在低温下存在磁序。我们的实验观察扩展了对石墨烯中非平凡拓扑间隙的知识。
Graphene is a quantum spin Hall insulator with a 45 $μ$eV wide non-trivial topological gap induced by the intrinsic spin-orbit coupling. Even though this zero-field spin splitting is weak, it makes graphene an attractive candidate for applications in quantum technologies, given the resulting long spin relaxation time. On the other side, the staggered sub-lattice potential, resulting from the coupling of graphene with its boron nitride substrate, compensates intrinsic spin-orbit coupling and decreases the non-trivial topological gap, which may lead to the phase transition into trivial band insulator state. In this work, we present extensive experimental studies of the zero-field splittings in monolayer and bilayer graphene in a temperature range 2K-12K by means of sub-Terahertz photoconductivity-based electron spin resonance technique. Surprisingly, we observe a decrease of the spin splittings with increasing temperature. We discuss the origin of this phenomenon by considering possible physical mechanisms likely to induce a temperature dependence of the spin-orbit coupling. These include the difference in the expansion coefficients between the graphene and the boron nitride substrate or the metal contacts, the electron-phonon interactions, and the presence of a magnetic order at low temperature. Our experimental observation expands knowledge about the non-trivial topological gap in graphene.