论文标题

通过广义增益功能进行信息泄漏的操作方法

An Operational Approach to Information Leakage via Generalized Gain Functions

论文作者

Kurri, Gowtham R., Sankar, Lalitha, Kosut, Oliver

论文摘要

我们通过提出\ emph {Maximal $ g $ -leakage}来引入信息泄漏的视图,这是一类丰富的操作有意义的泄漏指标,这些泄漏指标最近引入了泄漏措施 - {Maximal Leakage}和{最大$α$ -Leakage}。在最大$ g $ -leakage中,使用{增益函数}猜测未知随机变量的对手的增益应用于正确猜测的概率。特别是,最大$ g $ - 裂口在观察$ y $的情况下捕获了对手的预期增益,在猜测$ x $的随机函数时,在所有这些随机功能上最大化。我们还考虑了对手可以进行多次尝试以猜测感兴趣的随机功能的情况。我们表明,对于任何非负增益功能$ g $,最大泄漏是最大$ g $ - 渗的上限。在多个猜测下,我们获得了最大$ g $ - 渗的封闭形式的表达式,用于一类凹入增益功能。我们还研究了与$α$ -LOSS相关的特定收益功能的最大$ g $ - 渗透度量。特别是,我们首先完全表征了在多个猜测下的最小预期$α$ -LOSS,并分析了相应的泄漏度量如何受到猜测的影响。最后,我们根据对手的类型研究了两个最大$ g $ - 渗的变体,并为它们获得闭合形式表达式,只要满足某些轻度的规律条件,它们就不取决于特定的增益函数。我们通过为秩序无穷大的Rényi差异开发一个变分表征来做到这一点,该表征自然地概括了最大泄漏的定义,以结合任意增益函数。

We introduce a \emph{gain function} viewpoint of information leakage by proposing \emph{maximal $g$-leakage}, a rich class of operationally meaningful leakage measures that subsumes recently introduced leakage measures -- {maximal leakage} and {maximal $α$-leakage}. In maximal $g$-leakage, the gain of an adversary in guessing an unknown random variable is measured using a {gain function} applied to the probability of correctly guessing. In particular, maximal $g$-leakage captures the multiplicative increase, upon observing $Y$, in the expected gain of an adversary in guessing a randomized function of $X$, maximized over all such randomized functions. We also consider the scenario where an adversary can make multiple attempts to guess the randomized function of interest. We show that maximal leakage is an upper bound on maximal $g$-leakage under multiple guesses, for any non-negative gain function $g$. We obtain a closed-form expression for maximal $g$-leakage under multiple guesses for a class of concave gain functions. We also study maximal $g$-leakage measure for a specific class of gain functions related to the $α$-loss. In particular, we first completely characterize the minimal expected $α$-loss under multiple guesses and analyze how the corresponding leakage measure is affected with the number of guesses. Finally, we study two variants of maximal $g$-leakage depending on the type of adversary and obtain closed-form expressions for them, which do not depend on the particular gain function considered as long as it satisfies some mild regularity conditions. We do this by developing a variational characterization for the Rényi divergence of order infinity which naturally generalizes the definition of pointwise maximal leakage to incorporate arbitrary gain functions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源