论文标题

部分可观测时空混沌系统的无模型预测

METS-CoV: A Dataset of Medical Entity and Targeted Sentiment on COVID-19 Related Tweets

论文作者

Zhou, Peilin, Wang, Zeqiang, Chong, Dading, Guo, Zhijiang, Hua, Yining, Su, Zichang, Teng, Zhiyang, Wu, Jiageng, Yang, Jie

论文摘要

Covid-19-Pandemic继续在社交媒体上提出各种讨论或辩论的主题。为了探索大流行者对人们生活的影响,了解公众对与大流行有关的实体(例如药物,疫苗)对社交媒体的关注和态度至关重要。但是,经过对现有命名实体识别(NER)或目标情感分析(TSA)数据集培训的模型具有有限的理解与COVID相关的社交媒体文本的能力有限,因为这些数据集并未从医学角度设计或注释。本文释放了Mets-COV,这是一种包含医疗实体的数据集和与COVID相关的推文中的目标情感。 Mets-COV包含10,000条具有7种实体类型的推文,包括4种医疗实体类型(疾病,药物,症状和疫苗)和3种通用实体类型(人,位置和组织)。为了进一步调查推文用户对特定实体的态度,选择了4种类型的实体(人,组织,药物和疫苗),并以用户的情感注释,从而产生了具有9,101个实体的目标情感数据集(在5,278个推文中)。据我们所知,METS-COV是第一个收集与COVID相关推文的医疗实体和相应情感的数据集。我们通过广泛的实验基准了经典的机器学习模型和最先进的深度学习模型的性能。结果表明,该数据集在NER和TSA任务方面都有很大的改进空间。 METS-COV是开发更好的医学社交媒体工具并促进计算社会科学研究的重要资源,尤其是在流行病学方面。我们的数据,注释准则,基准模型和源代码已公开可用(https://github.com/ylab-open/mets-cov),以确保可重复性。

The COVID-19 pandemic continues to bring up various topics discussed or debated on social media. In order to explore the impact of pandemics on people's lives, it is crucial to understand the public's concerns and attitudes towards pandemic-related entities (e.g., drugs, vaccines) on social media. However, models trained on existing named entity recognition (NER) or targeted sentiment analysis (TSA) datasets have limited ability to understand COVID-19-related social media texts because these datasets are not designed or annotated from a medical perspective. This paper releases METS-CoV, a dataset containing medical entities and targeted sentiments from COVID-19-related tweets. METS-CoV contains 10,000 tweets with 7 types of entities, including 4 medical entity types (Disease, Drug, Symptom, and Vaccine) and 3 general entity types (Person, Location, and Organization). To further investigate tweet users' attitudes toward specific entities, 4 types of entities (Person, Organization, Drug, and Vaccine) are selected and annotated with user sentiments, resulting in a targeted sentiment dataset with 9,101 entities (in 5,278 tweets). To the best of our knowledge, METS-CoV is the first dataset to collect medical entities and corresponding sentiments of COVID-19-related tweets. We benchmark the performance of classical machine learning models and state-of-the-art deep learning models on NER and TSA tasks with extensive experiments. Results show that the dataset has vast room for improvement for both NER and TSA tasks. METS-CoV is an important resource for developing better medical social media tools and facilitating computational social science research, especially in epidemiology. Our data, annotation guidelines, benchmark models, and source code are publicly available (https://github.com/YLab-Open/METS-CoV) to ensure reproducibility.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源