论文标题
部分可观测时空混沌系统的无模型预测
Finite temperature equilibrium density profiles of integrable systems in confining potentials
论文作者
论文摘要
我们研究了两个一维经典集成模型中颗粒的平衡密度曲线,即硬杆和双曲线Calogero模型,置于限制电势中。对于这两种模型,颗粒间排斥足以防止颗粒轨迹相交。我们使用现场理论技术来计算密度谱及其与系统大小和温度的缩放,并将其与蒙特卡洛模拟的结果进行比较。在这两种情况下,我们都发现现场理论和模拟之间有很好的一致性。我们还考虑了TODA模型的情况,即颗粒间排斥力较弱,并且颗粒轨迹可以穿越。在这种情况下,我们发现由于缺乏热力学长度尺度,因此对场理论描述不适合。可以通过研究可分析可拖动的谐波链模型(TODA模型的Hessian近似)来理解从蒙特卡洛模拟获得的TODA模型的密度曲线。对于谐波链模型,一个人可以得出密度的精确表达,从而在二次陷阱中闪耀着TODA模型的某些定性特征。我们的工作提供了一种分析方法,以了解在限制陷阱中相互作用的可相互作用系统的平衡属性。
We study the equilibrium density profile of particles in two one-dimensional classical integrable models, namely hard rods and the hyperbolic Calogero model, placed in confining potentials. For both of these models the inter-particle repulsion is strong enough to prevent particle trajectories from intersecting. We use field theoretic techniques to compute the density profile and their scaling with system size and temperature, and compare them with results from Monte-Carlo simulations. In both cases we find good agreement between the field theory and simulations. We also consider the case of the Toda model in which inter-particle repulsion is weak and particle trajectories can cross. In this case, we find that a field theoretic description is ill-suited due to the lack of a thermodynamic length scale. The density profiles for the Toda model obtained from Monte-Carlo simulations can be understood by studying the analytically tractable harmonic chain model (Hessian approximation of the Toda model). For the harmonic chain model one can derive an exact expression for the density that shines light on some of the qualitative features of the Toda model in a quadratic trap. Our work provides an analytical approach towards understanding the equilibrium properties for interacting integrable systems in confining traps.