论文标题
重新思考基于聚类的伪标记,以进行无监督的元学习
Rethinking Clustering-Based Pseudo-Labeling for Unsupervised Meta-Learning
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
The pioneering method for unsupervised meta-learning, CACTUs, is a clustering-based approach with pseudo-labeling. This approach is model-agnostic and can be combined with supervised algorithms to learn from unlabeled data. However, it often suffers from label inconsistency or limited diversity, which leads to poor performance. In this work, we prove that the core reason for this is lack of a clustering-friendly property in the embedding space. We address this by minimizing the inter- to intra-class similarity ratio to provide clustering-friendly embedding features, and validate our approach through comprehensive experiments. Note that, despite only utilizing a simple clustering algorithm (k-means) in our embedding space to obtain the pseudo-labels, we achieve significant improvement. Moreover, we adopt a progressive evaluation mechanism to obtain more diverse samples in order to further alleviate the limited diversity problem. Finally, our approach is also model-agnostic and can easily be integrated into existing supervised methods. To demonstrate its generalization ability, we integrate it into two representative algorithms: MAML and EP. The results on three main few-shot benchmarks clearly show that the proposed method achieves significant improvement compared to state-of-the-art models. Notably, our approach also outperforms the corresponding supervised method in two tasks.