论文标题
GPT-3如何回应有关气候变化和黑人生活问题的不同公众:对会话AI公平的批判性评估
How GPT-3 responds to different publics on climate change and Black Lives Matter: A critical appraisal of equity in conversational AI
论文作者
论文摘要
使用深度学习产生类似人类的文本的自回归语言模型已变得越来越普遍。这样的模型为智能健康,金融和自动驾驶等领域的流行虚拟助手提供动力。尽管这些大语言模型的参数正在改善,但担心这些模型可能对社会中的所有亚组都不同样起作用。尽管对跨学科的AI公平性进行了越来越多的讨论,但缺乏系统的指标来评估公平在对话系统中的意义以及如何使不同人群参与评估循环。本文基于审议民主和科学技术研究的理论,提出了一个分析框架,以解开人类对话中的公平含义。使用此框架,我们进行了一项审计研究,以研究GPT-3如何应对有关关键科学和社会主题的不同子人群的反应:气候变化和黑人生活问题(BLM)运动。我们的语料库包括在性别,种族和种族,教育水平,英语作为第一语言的GPT-3和3290个人之间的超过20,000轮对话,以及对这些问题的看法。我们发现,在观点和教育少数群体中,对GPT-3的用户经验实质上较差;但是,这两个小组获得了最大的知识增长,改变了聊天后对支持BLM和气候变化工作的态度。我们将这些用户的经验划分为对话差异,发现GPT-3在对教育和舆论少数群体群体做出反应时,与对多数群体的反应相比,它使用了更多的负面表达。我们讨论了我们的发现对集中多样性,公平和包容性的审议对话AI系统的含义。
Autoregressive language models, which use deep learning to produce human-like texts, have become increasingly widespread. Such models are powering popular virtual assistants in areas like smart health, finance, and autonomous driving. While the parameters of these large language models are improving, concerns persist that these models might not work equally for all subgroups in society. Despite growing discussions of AI fairness across disciplines, there lacks systemic metrics to assess what equity means in dialogue systems and how to engage different populations in the assessment loop. Grounded in theories of deliberative democracy and science and technology studies, this paper proposes an analytical framework for unpacking the meaning of equity in human-AI dialogues. Using this framework, we conducted an auditing study to examine how GPT-3 responded to different sub-populations on crucial science and social topics: climate change and the Black Lives Matter (BLM) movement. Our corpus consists of over 20,000 rounds of dialogues between GPT-3 and 3290 individuals who vary in gender, race and ethnicity, education level, English as a first language, and opinions toward the issues. We found a substantively worse user experience with GPT-3 among the opinion and the education minority subpopulations; however, these two groups achieved the largest knowledge gain, changing attitudes toward supporting BLM and climate change efforts after the chat. We traced these user experience divides to conversational differences and found that GPT-3 used more negative expressions when it responded to the education and opinion minority groups, compared to its responses to the majority groups. We discuss the implications of our findings for a deliberative conversational AI system that centralizes diversity, equity, and inclusion.