论文标题
Banach代数的不同类型的弱舒适性
Different types of weak amenability for Banach algebras
论文作者
论文摘要
在本文中,我们介绍并研究了周期性弱的和点可正常的概念。然后,我们将这些概念与弱化和周期性敏感的概念进行了比较,并找到了它们之间的关系。例如,我们证明当且仅当它既可周期性且可周期性弱)时,证明Banach代数是弱的。如果$ a $是可交换的,则$ a $的弱化性和周期性弱的舒适性相同。我们还表明,如果$ a $是带有$δ(a)\ neq \ emptyset $的Banach代数,则$ a $在且仅当$ a $ a $ abos point aboinsable andable andable andable和必不可少时。对于一个Unital,可交换的Banach代数$ a $,是弱的,可周期性弱的概念,可符合点的重合。在这种情况下,这些等同于以下事实:$ a $的每个最大理想都是必不可少的。
In this paper, we introduce and investigate the concepts of cyclically weakly amenable and point amenable. Then, we compare these concepts with the concepts of weakly amenable and cyclically amenable and find the relation between them. For example, we prove that a Banach algebra is weakly amenable if and only if it is both cyclically amenable and cyclically weakly amenable. In the case where $A$ is commutative, the weak amenability and cyclically weak amenability of $A$ are equivalent. We also show that if $A$ is a Banach algebra with $Δ(A)\neq\emptyset$, then $A$ is cyclically weakly amenable if and only if $A$ is point amenable and essential. For a unital, commutative Banach algebra $A$, the notions of weakly amenable, cyclically weakly amenable and point amenable coincide. In this case, these are equivalent to the fact that every maximal ideal of $A$ is essential.