论文标题
在$ h \ to zz $中测试纠缠和贝尔的不平等现象
Testing entanglement and Bell inequalities in $H \to ZZ$
论文作者
论文摘要
我们在$ h \ rightarrow zz $衰减中讨论量子纠缠和违反贝尔的不平等现象,尤其是当两个$ z- $玻色子腐烂到轻卵子中时。尽管这样的过程意味着对统计数据的重要抑制作用,但这是由“准最大输入”系统的清洁信号交易的,这使得可以在高能量下检查这些关键现象非常有前途。在本文中,我们设计了一个新颖的框架,可以从$ h \到zz $数据提取所有与此目标有关的重要信息,尤其是自旋相关性可观察到。在这种情况下,我们仅根据两个参数得出了足够和必要的条件。同样,我们获得了违反贝尔型不平等现象的足够且改善的条件。数值分析表明,以$ L = 300 \ text {fb}^{ - 1} $纠缠的光度为$>3σ$级别。对于$ l = 3 \ text {ab}^{ - 1} $(hl-lhc)纠缠范围可以超过$5σ$级别,而对违反铃铛不平等的敏感性为$4.5σ$级别
We discuss quantum entanglement and violation of Bell inequalities in the $H\rightarrow ZZ$ decay, in particular when the two $Z-$bosons decay into light leptons. Although such process implies an important suppression of the statistics, this is traded by clean signals from a "quasi maximally-entangled" system, which makes it very promising to check these crucial phenomena at high energy. In this paper we devise a novel framework to extract from $H \to ZZ$ data all significant information related to this goal, in particular spin correlation observables. In this context we derive sufficient and necessary conditions for entanglement in terms of only two parameters. Likewise, we obtain a sufficient and improved condition for the violation of Bell-type inequalities. The numerical analysis shows that with a luminosity of $L = 300 \text{fb}^{-1}$ entanglement can be probed at $> 3σ$ level. For $L = 3 \text{ab}^{-1}$ (HL-LHC) entanglement can be probed beyond the $5σ$ level, while the sensitivity to a violation of the Bell inequalities is at the $4.5σ$ level