论文标题
区分暗物质模型的米利透镜观察的力量
Discriminating power of milli-lensing observations for dark matter models
论文作者
论文摘要
暗物质(DM)的性质仍在激烈的辩论中。半乳酸尺度特别关键,因为当前不同的可行DM模型对这些量表上DM光环的预期丰度和密度概况做出了不同的预测。我们研究了半乳酸DM光环在背景紧凑源上充当强镜的能力,从而在不同的DM模型上产生了毫米级尺度(Milli-Lens)上的重力透镜事件。对于每种DM场景,我们探讨了$ \ sim $ 5000远处的样本是否足以检测至少一个毫米镜头。我们开发了一个半分析模型,以估计各种DM模型的源红移的米利透镜光学深度。我们采用了新闻技术形式主义,以及最近的N体模拟的结果来计算每个DM模型的光环的适当球体平均密度谱。我们将晶状体系统视为点质量透镜,并调用有效的表面质量密度阈值,以计算充当重力晶状体的光环的分数。我们研究了三类暗物质模型:冷DM,温暖的DM和自我相互作用的DM。我们发现,由温暖DM组成的光环被证明是光学薄的,对于强重力毫米透镜(零预期的透镜事件)。 CDM光环可能会根据浓度质量关系的陡度产生镜头事件。自我互动DM光环只有在光环经历了重力热塌陷,从而导致高度密度的中心核心,才能有效充当重力毫米。
The nature of dark matter (DM) is still under intense debate. Sub-galactic scales are particularly critical, as different, currently viable DM models make diverse predictions on the expected abundance and density profile of DM haloes on these scales. We investigate the ability of sub-galactic DM haloes to act as strong lenses on background compact sources, producing gravitational lensing events on milli-arcsecond scales (milli-lenses), for different DM models. For each DM scenario, we explore whether a sample of $\sim$ 5000 distant sources is sufficient to detect at least one milli-lens. We develop a semi-analytical model to estimate the milli-lensing optical depth as a function of the source's redshift for various DM models. We employ the Press-Schechter formalism, as well as results from recent N-body simulations to compute the halo mass function, taking into account the appropriate spherically averaged density profile of haloes for each DM model. We treat the lensing system as a point-mass lens and invoke the effective surface mass density threshold to calculate the fraction of a halo that acts as a gravitational lens. We study three classes of dark matter models: cold DM, warm DM, and self-interacting DM. We find that haloes consisting of warm DM turn out to be optically thin for strong gravitational milli-lensing (zero expected lensing events). CDM haloes may produce lensing events depending on the steepness of the concentration-mass relation. Self-interacting DM haloes can efficiently act as gravitational milli-lenses only if haloes experience gravothermal collapse, resulting in highly dense central cores.