论文标题
$ b_ {d,s} \ to k^{*0} {\ overline k^{*0}} $ to y to $ b_ {
Family Non-universal $Z^\prime$ Effects on $B_{d,s} \to K^{*0} {\overline K^{*0}}$ Decays in Perturbative QCD Approach
论文作者
论文摘要
非质子衰减$ b_ {d,s} \ to k^{*0} {\ overline k^{*0}} $以扰动QCD方法重新分析,该方法基于$ k _ {\ rm t} $分解。在标准模型中,计算出的分支分数和纵向极化分数为$ b_ {d} \ to k^{*0} {\ edline k^{*0}} $与实验测量一致,而$ b_ {s} \ to k^{*sim sim sim sim nline nline nline nline nline nline nline nline nline {$ sim a}纵向极化分数和分支分数结合的参数被评估为$ l_ {k^*\ overline {k}^{*0}}}^{\ rm pqcd} = 12.7^{+5.6} _ {+5.6} _ { - 3.2} $,与实验相比,这也比实验更大。然后,我们通过引入$ b \ in $ b \ in $ b \ in s q \ bar q $ transitions的$ z^{\ prime} $ boson来研究所有可观察的物品。为了减少新参数的数量,我们尽可能简化模型。发现有固定值$ω_{b_s} = 0.55 $,这些存在参数空间,其中所有测量值,包括分支分数,纵向极化分数和$ l_ {k^*\ overline {k}^{k}^{*0}}} $ - 参数可以同时容纳。我们所有的结果和小参数空间都可以在运行的LHC实验(Belle-II和未来的高能量墙面)中进一步测试。
The nonleptonic decays $B_{d,s} \to K^{*0} {\overline K^{*0}}$ are reanalyzed in perturbative QCD approach, which is based on the $k_{\rm T}$ factorization. In the standard model, the calculated branching fraction and longitudinal polarization fraction of $B_{d} \to K^{*0} {\overline K^{*0}}$ are in agreement with experimental measurements, while the predictions of $B_{s} \to K^{*0} {\overline K^{*0}}$ cannot agree with data simultaneously. The parameter that combines of longitudinal polarization fractions and branching fractions evaluated to be $L_{K^*\overline{K}^{*0}}^{\rm PQCD}= 12.7^{+5.6} _{-3.2}$, which is also larger than that abstracted from experimental measurements. We then study all observables by introducing a family non-universal $Z^{\prime}$ boson in $b\to s q\bar q$ transitions. In order to reduce the number of new parameters, we simplify the model as possible. It is found that with the fixed value $ω_{B_s}=0.55$, these exists parameter space where all measurements, including the branching fraction, longitudinal polarization fraction and $L_{K^*\overline{K}^{*0}}$-parameter, could be accommodated simultaneously. All our results and the small parameter space could be further tested in the running LHC experiments, Belle-II and future high-energy colliders.