论文标题
部分可观测时空混沌系统的无模型预测
Genetic Programming-Based Evolutionary Deep Learning for Data-Efficient Image Classification
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Data-efficient image classification is a challenging task that aims to solve image classification using small training data. Neural network-based deep learning methods are effective for image classification, but they typically require large-scale training data and have major limitations such as requiring expertise to design network architectures and having poor interpretability. Evolutionary deep learning is a recent hot topic that combines evolutionary computation with deep learning. However, most evolutionary deep learning methods focus on evolving architectures of neural networks, which still suffer from limitations such as poor interpretability. To address this, this paper proposes a new genetic programming-based evolutionary deep learning approach to data-efficient image classification. The new approach can automatically evolve variable-length models using many important operators from both image and classification domains. It can learn different types of image features from colour or gray-scale images, and construct effective and diverse ensembles for image classification. A flexible multi-layer representation enables the new approach to automatically construct shallow or deep models/trees for different tasks and perform effective transformations on the input data via multiple internal nodes. The new approach is applied to solve five image classification tasks with different training set sizes. The results show that it achieves better performance in most cases than deep learning methods for data-efficient image classification. A deep analysis shows that the new approach has good convergence and evolves models with high interpretability, different lengths/sizes/shapes, and good transferability.