论文标题

自主隐性重建的有效查看路径计划

Efficient View Path Planning for Autonomous Implicit Reconstruction

论文作者

Zeng, Jing, Li, Yanxu, Ran, Yunlong, Li, Shuo, Gao, Fei, Li, Lincheng, He, Shibo, chen, Jiming, Ye, Qi

论文摘要

隐式神经表示显示了3D场景重建的有希望的潜力。最近的工作将其应用于自主3D重建,通过学习信息获得图路径计划的信息增益。尽管如此,信息增益的计算很昂贵,并且与使用体积表示的计算相比,使用隐式表示3D点的碰撞检查要慢得多。在本文中,我们建议1)利用神经网络作为信息增益场的隐式函数近似器,以及2)将隐式细粒表示与粗容积表示形式相结合以提高效率。随着效率的提高,我们提出了基于基于图的计划者的新颖信息路径计划。与具有隐式和明确表示的自主重建相比,我们的方法表明,重建质量和计划效率的重大提高。我们在真正的无人机上部署该方法,结果表明我们的方法可以计划信息意见并以高质量重建场景。

Implicit neural representations have shown promising potential for the 3D scene reconstruction. Recent work applies it to autonomous 3D reconstruction by learning information gain for view path planning. Effective as it is, the computation of the information gain is expensive, and compared with that using volumetric representations, collision checking using the implicit representation for a 3D point is much slower. In the paper, we propose to 1) leverage a neural network as an implicit function approximator for the information gain field and 2) combine the implicit fine-grained representation with coarse volumetric representations to improve efficiency. Further with the improved efficiency, we propose a novel informative path planning based on a graph-based planner. Our method demonstrates significant improvements in the reconstruction quality and planning efficiency compared with autonomous reconstructions with implicit and explicit representations. We deploy the method on a real UAV and the results show that our method can plan informative views and reconstruct a scene with high quality.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源