论文标题
在超导量子计算中克服I/O瓶颈:用超低功率,基本温度的低温cyo-Cmos多路复用器进行多重量子控制控制
Overcoming I/O bottleneck in superconducting quantum computing: multiplexed qubit control with ultra-low-power, base-temperature cryo-CMOS multiplexer
论文作者
论文摘要
大规模的超导量子计算系统需要在Millikelvin温度下进行高保真控制和大量Qubits的读数,从而导致大量的输入输出瓶颈。基于互补的金属氧化物 - 溶剂导体(CMOS)技术的冷冻电剂可能会提供可扩展且通用的解决方案来克服这种瓶颈。但是,由于需要避免避免在冷冻电子操作过程中产生的电子和热噪声之间的交叉耦合而产生的不利影响。在这里,我们提出了一个超低功率射频(RF)多路复用的冷冻电力解决方案,在15 MK以下运行,该解决方案允许控制和接口以最小的交叉耦合来控制和接口。我们通过将其与超导量子标式接口进行基于其性能,并观察到量子的放松时间($ t_1 $)不受影响,而相干时间($ t_2 $)仅在静态和动态操作中受到最小的影响。使用多路复用器,可以通过适当的热滤波来实现高于99.9%的单量子门保真度,即远高于基于表面代码的量子误差校正的阈值。此外,我们通过动态窗口校准的量子控制脉冲来证明时间划分旋转量子置换率控制的能力。我们的结果表明,冷冻-CMOS多路复用器可用于显着减少大规模Qubit设备表征,大规模量子处理器控制和量子误差校正协议的接线资源。
Large-scale superconducting quantum computing systems entail high-fidelity control and readout of large numbers of qubits at millikelvin temperatures, resulting in a massive input-output bottleneck. Cryo-electronics, based on complementary metal-oxide-semiconductor (CMOS) technology, may offer a scalable and versatile solution to overcome this bottleneck. However, detrimental effects due to cross-coupling between the electronic and thermal noise generated during cryo-electronics operation and the qubits need to be avoided. Here we present an ultra-low power radio-frequency (RF) multiplexing cryo-electronics solution operating below 15 mK that allows for control and interfacing of superconducting qubits with minimal cross-coupling. We benchmark its performance by interfacing it with a superconducting qubit and observe that the qubit's relaxation times ($T_1$) are unaffected, while the coherence times ($T_2$) are only minimally affected in both static and dynamic operation. Using the multiplexer, single qubit gate fidelities above 99.9%, i.e., well above the threshold for surface-code based quantum error-correction, can be achieved with appropriate thermal filtering. In addition, we demonstrate the capability of time-division-multiplexed qubit control by dynamically windowing calibrated qubit control pulses. Our results show that cryo-CMOS multiplexers could be used to significantly reduce the wiring resources for large-scale qubit device characterization, large-scale quantum processor control and quantum error correction protocols.