论文标题

电子损失光谱数据库综合和通过深度学习神经网络对核心损失边缘识别的自动化

Electron energy loss spectroscopy database synthesis and automation of core-loss edge recognition by deep-learning neural networks

论文作者

Kong, Lingli, Ji, Zhengran, Xin, Huolin L.

论文摘要

电子能量损失光谱(EELS)光谱中编码的电离边缘使高级材料分析(包括组成分析和元素定量)。平行鳗鱼仪器和快速,敏感的探测器的开发极大地提高了鳗鱼光谱的采集速度。但是,传统的核心损失边缘识别方式是基于经验和人工依赖人,这限制了处理速度。到目前为止,RAW EELS光谱上核心损失边缘的低信号噪声比和低跳跃比对于边缘识别的自动化一直在挑战。在这项工作中,提出了卷积三方向长的短期记忆神经网络(CNN-BILSTM),以使来自RAW Spectra的核心损失边缘的检测和元素鉴定自动化。通过使用我们的正向模型来协助神经网络的培训和验证,可以合成鳗鱼光谱数据库。为了使合成的光谱类似于真实光谱,我们收集了一个实验获得的鳗鱼核心边缘的大型库。在综合训练库中,边缘是通过将多高斯模型拟合到实验中的真实边缘来建模的,并模拟并添加了噪声和仪器不完美。对训练有素的CNN-BILSTM网络进行了针对从实验收集的模拟光谱和实际光谱进行测试。该网络的高精度为94.9%,证明,如果没有对原始光谱进行复杂的预处理,则提议的CNN-BILSTM网络可以以高度准确地实现鳗鱼光谱核心边缘识别的自动化。

The ionization edges encoded in the electron energy loss spectroscopy (EELS) spectra enable advanced material analysis including composition analyses and elemental quantifications. The development of the parallel EELS instrument and fast, sensitive detectors have greatly improved the acquisition speed of EELS spectra. However, the traditional way of core-loss edge recognition is experience based and human labor dependent, which limits the processing speed. So far, the low signal-noise ratio and the low jump ratio of the core-loss edges on the raw EELS spectra have been challenging for the automation of edge recognition. In this work, a convolutional-bidirectional long short-term memory neural network (CNN-BiLSTM) is proposed to automate the detection and elemental identification of core-loss edges from raw spectra. An EELS spectral database is synthesized by using our forward model to assist in the training and validation of the neural network. To make the synthesized spectra resemble the real spectra, we collected a large library of experimentally acquired EELS core edges. In synthesize the training library, the edges are modeled by fitting the multi-gaussian model to the real edges from experiments, and the noise and instrumental imperfectness are simulated and added. The well-trained CNN-BiLSTM network is tested against both the simulated spectra and real spectra collected from experiments. The high accuracy of the network, 94.9 %, proves that, without complicated preprocessing of the raw spectra, the proposed CNN-BiLSTM network achieves the automation of core-loss edge recognition for EELS spectra with high accuracy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源