论文标题

部分可观测时空混沌系统的无模型预测

Evolving Complexity is Hard

论文作者

Wright, Alden H., Laue, Cheyenne L.

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Understanding the evolution of complexity is an important topic in a wide variety of academic fields. Implications of better understanding complexity include increased knowledge of major evolutionary transitions and the properties of living and technological systems. Genotype-phenotype (G-P) maps are fundamental to evolution, and biologically-oriented G-P maps have been shown to have interesting and often-universal properties that enable evolution by following phenotype-preserving walks in genotype space. Here we use a digital logic gate circuit G-P map where genotypes are represented by circuits and phenotypes by the functions that the circuits compute. We compare two mathematical definitions of circuit and phenotype complexity and show how these definitions relate to other well-known properties of evolution such as redundancy, robustness, and evolvability. Using both Cartesian and Linear genetic programming implementations, we demonstrate that the logic gate circuit shares many universal properties of biologically derived G-P maps, with the exception of the relationship between one method of computing phenotypic evolvability, robustness, and complexity. Due to the inherent structure of the G-P map, including the predominance of rare phenotypes, large interconnected neutral networks, and the high mutational load of low robustness, complex phenotypes are difficult to discover using evolution. We suggest, based on this evidence, that evolving complexity is hard and we discuss computational strategies for genetic-programming-based evolution to successfully find genotypes that map to complex phenotypes in the search space.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源