论文标题

欧几里得制备xxvi。欧几里得的形态挑战。达到数十亿星系的结构参数

Euclid preparation XXVI. The Euclid Morphology Challenge. Towards structural parameters for billions of galaxies

论文作者

Euclid Collaboration, Bretonnière, H., Kuchner, U., Huertas-Company, M., Merlin, E., Castellano, M., Tuccillo, D., Buitrago, F., Conselice, C. J., Boucaud, A., Häußler, B., Kümmel, M., Hartley, W. G., Ayllon, A. Alvarez, Bertin, E., Ferrari, F., Ferreira, L., Gavazzi, R., Hernández-Lang, D., Lucatelli, G., Robotham, A. S. G., Schefer, M., Wang, L., Cabanac, R., Sánchez, H. Domínguez, Duc, P. -A., Fotopoulou, S., Kruk, S., La Marca, A., Margalef-Bentabol, B., Marleau, F. R., Tortora, C., Aghanim, N., Amara, A., Auricchio, N., Azzollini, R., Baldi, M., Bender, R., Bodendorf, C., Branchini, E., Brescia, M., Brinchmann, J., Camera, S., Capobianco, V., Carbone, C., Carretero, J., Castander, F. J., Cavuoti, S., Cimatti, A., Cledassou, R., Congedo, G., Conversi, L., Copin, Y., Corcione, L., Courbin, F., Cropper, M., Da Silva, A., Degaudenzi, H., Dinis, J., Dubath, F., Duncan, C. A. J., Dupac, X., Dusini, S., Farrens, S., Ferriol, S., Frailis, M., Franceschi, E., Fumana, M., Galeotta, S., Garilli, B., Gillis, B., Giocoli, C., Grazian, A., Grupp, F., Haugan, S. V. H., Hoekstra, H., Holmes, W., Hormuth, F., Hornstrup, A., Hudelot, P., Jahnke, K., Kermiche, S., Kiessling, A., Kohley, R., Kunz, M., Kurki-Suonio, H., Ligori, S., Lilje, P. B., Lloro, I., Mansutti, O., Marggraf, O., Markovic, K., Marulli, F., Massey, R., McCracken, H. J., Medinaceli, E., Melchior, M., Meneghetti, M., Meylan, G., Moresco, M., Moscardini, L., Munari, E., Niemi, S. M., Padilla, C., Paltani, S., Pasian, F., Pedersen, K., Percival, W., Pettorino, V., Polenta, G., Poncet, M., Pozzetti, L., Raison, F., Rebolo, R., Renzi, A., Rhodes, J., Riccio, G., Romelli, E., Rosset, C., Rossetti, E., Saglia, R., Sapone, D., Sartoris, B., Schneider, P., Secroun, A., Seidel, G., Sirignano, C., Sirri, G., Skottfelt, J., Starck, J. -L., Tallada-Crespí, P., Taylor, A. N., Tereno, I., Toledo-Moreo, R., Tutusaus, I., Valentijn, E. A., Valenziano, L., Vassallo, T., Wang, Y., Weller, J., Zamorani, G., Zoubian, J., Andreon, S., Bardelli, S., Colodro-Conde, C., Di Ferdinando, D., Graciá-Carpio, J., Lindholm, V., Mauri, N., Mei, S., Scottez, V., Zucca, E., Baccigalupi, C., Ballardini, M., Bernardeau, F., Biviano, A., Borgani, S., Borlaff, A. S., Burigana, C., Cappi, A., Carvalho, C. S., Casas, S., Castignani, G., Cooray, A. R., Coupon, J., Courtois, H. M., Davini, S., De Lucia, G., Desprez, G., Escartin, J. A., Escoffier, S., Fabricius, M., Farina, M., Fontana, A., Ganga, K., Garcia-Bellido, J., George, K., Gozaliasl, G., Hildebrandt, H., Hook, I., Ilbert, O., Ilić, S., Joachimi, B., Kansal, V., Keihanen, E., Kirkpatrick, C. C., Loureiro, A., Macias-Perez, J., Magliocchetti, M., Maoli, R., Marcin, S., Martinelli, M., Martinet, N., Maturi, M., Monaco, P., Morgante, G., Nadathur, S., Nucita, A. A., Patrizii, L., Popa, V., Porciani, C., Potter, D., Pourtsidou, A., Pöntinen, M., Reimberg, P., Sánchez, A. G., Sakr, Z., Schirmer, M., Sefusatti, E., Sereno, M., Stadel, J., Teyssier, R., Valiviita, J., van Mierlo, S. E., Veropalumbo, A., Viel, M., Weaver, J. R., Scott, D.

论文摘要

各种欧几里得成像调查将通过在空间分辨率高的15 000平方度的前所未有的面积上传递成像,成为研究星系形态的研究。为了了解从欧几里德检测星系测量形态的能力并帮助实施管道中的测量结果,我们进行了欧几里得的形态挑战,这是我们在两篇论文中提出的。而Merlin等人的伴侣论文。侧重于光度法的分析,本文评估了从欧几里德广泛调查中预测的成像中参数星系形态测量的准确性。我们评估了五个最先进的表面亮度拟合代码,DeepLegato,Galapagos-2,Morfometryka,Profortryka,Profit和Source Xtractor ++在约150万个模拟星系的样本中,类似于欧几里得Vis和NIR仪器的观察结果。这些模拟包括具有一个和两个组件的分析性剖面,以及通过神经网络产生的更真实的星系。我们发现,尽管有一些特定于代码的差异,但所有方法倾向于实现可靠的结构测量值(在理想的Sérsic模拟上散射10%),至一个明显的大小约为23个成分,而两个组件中的21个分别对应于大约1和5的信噪比。我们还表明,当对非分析曲线进行测试时,结果通常会降解为3倍,由系统学驱动。我们得出的结论是,欧几里得官方数据发布将在任务结束时在欧几里德广泛的调查中为至少4亿个星系提供强大的结构参数。我们发现,在微弱的末端解释代码不同行为的关键因素是各种结构参数的采用先验。

The various Euclid imaging surveys will become a reference for studies of galaxy morphology by delivering imaging over an unprecedented area of 15 000 square degrees with high spatial resolution. In order to understand the capabilities of measuring morphologies from Euclid-detected galaxies and to help implement measurements in the pipeline, we have conducted the Euclid Morphology Challenge, which we present in two papers. While the companion paper by Merlin et al. focuses on the analysis of photometry, this paper assesses the accuracy of the parametric galaxy morphology measurements in imaging predicted from within the Euclid Wide Survey. We evaluate the performance of five state-of-the-art surface-brightness-fitting codes DeepLeGATo, Galapagos-2, Morfometryka, Profit and SourceXtractor++ on a sample of about 1.5 million simulated galaxies resembling reduced observations with the Euclid VIS and NIR instruments. The simulations include analytic Sérsic profiles with one and two components, as well as more realistic galaxies generated with neural networks. We find that, despite some code-specific differences, all methods tend to achieve reliable structural measurements (10% scatter on ideal Sérsic simulations) down to an apparent magnitude of about 23 in one component and 21 in two components, which correspond to a signal-to-noise ratio of approximately 1 and 5 respectively. We also show that when tested on non-analytic profiles, the results are typically degraded by a factor of 3, driven by systematics. We conclude that the Euclid official Data Releases will deliver robust structural parameters for at least 400 million galaxies in the Euclid Wide Survey by the end of the mission. We find that a key factor for explaining the different behaviour of the codes at the faint end is the set of adopted priors for the various structural parameters.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源