论文标题

变体模拟操作员网络

Variationally Mimetic Operator Networks

论文作者

Patel, Dhruv, Ray, Deep, Abdelmalik, Michael R. A., Hughes, Thomas J. R., Oberai, Assad A.

论文摘要

近年来,运营商网络已成为有希望的深度学习工具,用于近似偏微分方程(PDE)的解决方案。这些网络绘制了描述材料属性,迫使函数和边界数据的函数的输入函数。这项工作描述了一种针对操作员网络的新体系结构,该架构模仿了从问题的近似变异或弱公式获得的数值解决方案的形式。这些想法在通用椭圆的PDE中的应用导致变异模拟操作员网络(Varmion)。像常规的深层操作员网络(DeeldOnet)一样,varmion也由一个子网络组成,该子网络构建了输出的基础函数,另一个构造了这些基础函数系数的基本功能。但是,与deponet相反,这些子网络在Varmion中的结构得到了精确确定。对Varmion解决方案中误差的分析表明,它包含训练数据中的误差,训练误差,采样输入和输出功能中的正交误差以及“覆盖误差”的贡献,这些误差可以衡量测试输入功能与训练数据集中最接近的函数之间的距离。它还取决于精确溶液操作员的稳定性常数及其varmion近似。 Varmion在规范椭圆PDE和非线性PDE中的应用表明,对于大约相同数量的网络参数,平均而言,Varmion的误差通常比标准的DeepOnet和最近提出的多重输入操作员网络(Mionet)更小。此外,其性能对于输入功能的变化,用于采样输入和输出功能的技术,用于构建基本函数的技术以及输入功能的数量更为强大。

In recent years operator networks have emerged as promising deep learning tools for approximating the solution to partial differential equations (PDEs). These networks map input functions that describe material properties, forcing functions and boundary data to the solution of a PDE. This work describes a new architecture for operator networks that mimics the form of the numerical solution obtained from an approximate variational or weak formulation of the problem. The application of these ideas to a generic elliptic PDE leads to a variationally mimetic operator network (VarMiON). Like the conventional Deep Operator Network (DeepONet) the VarMiON is also composed of a sub-network that constructs the basis functions for the output and another that constructs the coefficients for these basis functions. However, in contrast to the DeepONet, the architecture of these sub-networks in the VarMiON is precisely determined. An analysis of the error in the VarMiON solution reveals that it contains contributions from the error in the training data, the training error, the quadrature error in sampling input and output functions, and a "covering error" that measures the distance between the test input functions and the nearest functions in the training dataset. It also depends on the stability constants for the exact solution operator and its VarMiON approximation. The application of the VarMiON to a canonical elliptic PDE and a nonlinear PDE reveals that for approximately the same number of network parameters, on average the VarMiON incurs smaller errors than a standard DeepONet and a recently proposed multiple-input operator network (MIONet). Further, its performance is more robust to variations in input functions, the techniques used to sample the input and output functions, the techniques used to construct the basis functions, and the number of input functions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源