论文标题

通过分类有效地在线模仿学习

On Efficient Online Imitation Learning via Classification

论文作者

Li, Yichen, Zhang, Chicheng

论文摘要

模仿学习(IL)是解决顺序决策问题的一般学习范式。互动模仿学习,学习者可以在其中与专家示范的互动查询,与其离线同行或加强学习相比,已证明可以实现可证明的出色样本效率保证。在这项工作中,我们研究了基于分类的在线模仿学习(abbrev。$ \ textbf {coil} $),以及在这种情况下设计Oracle有效的遗憾最小化算法的基本可行性,重点是一般的不可思议的情况。我们做出以下贡献:(1)我们表明,在$ \ textbf {coil} $问题中,任何适当的在线学习算法都不能保证总体上遗憾的是; (2)我们提出了$ \ textbf {logger} $,一种不当的在线学习算法框架,通过利用混合策略类的新定义,将$ \ textbf {coil} $降低到在线线性优化; (3)我们在$ \ textbf {logger} $框架中设计了两种Oracle效率算法,它们享受不同的样本和互动式的复杂性权衡,并进行有限样本分析以显示其对幼稚行为克隆的改进; (4)我们表明,在标准的复杂性理论假设下,在$ \ textbf {logger} $ Framework中,有效的动态遗憾最小化是不可行的。我们的工作将基于分类的在线模仿学习(一个重要的IL设置)归结为牢固的基础。

Imitation learning (IL) is a general learning paradigm for tackling sequential decision-making problems. Interactive imitation learning, where learners can interactively query for expert demonstrations, has been shown to achieve provably superior sample efficiency guarantees compared with its offline counterpart or reinforcement learning. In this work, we study classification-based online imitation learning (abbrev. $\textbf{COIL}$) and the fundamental feasibility to design oracle-efficient regret-minimization algorithms in this setting, with a focus on the general nonrealizable case. We make the following contributions: (1) we show that in the $\textbf{COIL}$ problem, any proper online learning algorithm cannot guarantee a sublinear regret in general; (2) we propose $\textbf{Logger}$, an improper online learning algorithmic framework, that reduces $\textbf{COIL}$ to online linear optimization, by utilizing a new definition of mixed policy class; (3) we design two oracle-efficient algorithms within the $\textbf{Logger}$ framework that enjoy different sample and interaction round complexity tradeoffs, and conduct finite-sample analyses to show their improvements over naive behavior cloning; (4) we show that under the standard complexity-theoretic assumptions, efficient dynamic regret minimization is infeasible in the $\textbf{Logger}$ framework. Our work puts classification-based online imitation learning, an important IL setup, into a firmer foundation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源