论文标题

舒伯特品种的最小抛物线亚组和自动形态群

Minimal Parabolic subgroups and Automorphism groups of Schubert varieties-II

论文作者

Kannan, S. Senthamarai, Saha, Pinakinath

论文摘要

让$ g $成为一个简单的代数伴随类型$ \ mathbb {c} $的复数,$ b $是$ g $的borel子组,其中包含最大圆环$ t $g。$ $g。$ $g。$在本文中,我们显示$α$是一个$ $ $ $ $ $ b $ b $ b $ q po $ q, $ x_ {q}(w)$ g/q $中的$,使得$ g $的最小抛物线子组$p_α$是连接的组件,包含$ x_ {q}(q}(w)的所有代数自动形态的同一群体的身份自动形态。

Let $G$ be a simple algebraic group of adjoint type over the field $\mathbb{C}$ of complex numbers, $B$ be a Borel subgroup of $G$ containing a maximal torus $T$ of $G.$ In this article, we show that $α$ is a co-minuscule root if and only if for any parabolic subgroup $Q$ containing $B$ properly, there is no Schubert variety $X_{Q}(w)$ in $G/Q$ such that the minimal parabolic subgroup $P_α$ of $G$ is the connected component, containing the identity automorphism of the group of all algebraic automorphisms of $X_{Q}(w).$

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源