论文标题
机器学习限制了偏离宇宙大规模结构的一般相对性的偏差
Machine learning constraints on deviations from general relativity from the large scale structure of the Universe
论文作者
论文摘要
我们使用一种称为遗传算法(GA)的特定机器学习方法,以通过牛顿常数的$μ\ equiv g_ \ equiv g_ \ equ_ \ mathrm {eff}/g_ \}/g_ \ mathrm {n} $和黑暗能量anisotropic porter new n $平衡的范围来对一般相对论(GR)的偏差进行约束。具体而言,我们使用大量背景和线性订购扰动数据,例如IA类型超新星,Baryon声学振荡,宇宙天文钟,红移空间扭曲和$ E_G $数据。我们发现,尽管GA受到当前可用数据的质量较低的影响,尤其是从$ E_G $数据中,但牛顿常数的重建与错误中的常数值一致。另一方面,由于$ e_g $数据的稀疏性和系统,各向异性应力与统一性远离统一。最后,我们还基于下一代调查创建合成数据,并预测了可能检测到GR偏差的任何可能的限制。特别是,我们使用两个基准模型:一种基于宇宙常数$λ$ CDM模型,另一个基于一个模型,该模型具有不断发展的牛顿常数,称为$μ$ CDM。我们发现,$μ(z)$和$η(z)$的GA重建可以限制为几个基准模型内,并且在$μ$ CDM模拟的情况下,它们还可以强烈地检测到GA重建方法的实用性。
We use a particular machine learning approach, called the genetic algorithms (GA), in order to place constraints on deviations from general relativity (GR) via a possible evolution of Newton's constant $μ\equiv G_\mathrm{eff}/G_\mathrm{N}$ and of the dark energy anisotropic stress $η$, both defined to be equal to one in GR. Specifically, we use a plethora of background and linear-order perturbations data, such as type Ia supernovae, baryon acoustic oscillations, cosmic chronometers, redshift space distortions and $E_g$ data. We find that although the GA is affected by the lower quality of the currently available data, especially from the $E_g$ data, the reconstruction of Newton's constant is consistent with a constant value within the errors. On the other hand, the anisotropic stress deviates strongly from unity due to the sparsity and the systematics of the $E_g$ data. Finally, we also create synthetic data based on a next-generation survey and forecast the limits of any possible detection of deviations from GR. In particular, we use two fiducial models: one based on the cosmological constant $Λ$CDM model and another on a model with an evolving Newton's constant, dubbed $μ$CDM. We find that the GA reconstructions of $μ(z)$ and $η(z)$ can be constrained to within a few percent of the fiducial models and in the case of the $μ$CDM mocks, they can also provide a strong detection of several $σ$s, thus demonstrating the utility of the GA reconstruction approach.