论文标题
在CEPC的HIGGS物理研究中量子机学习的应用
Application of Quantum Machine Learning in a Higgs Physics Study at the CEPC
论文作者
论文摘要
近几十年来,机器学习已经蓬勃发展,并且在许多领域都至关重要。它显着解决了粒子物理学中的一些问题 - 粒子重建,事件分类等。但是,现在是时候通过量子计算打破常规机器学习的限制了。具有量子内核估计器(QSVM-KERNEL)的支持矢量机算法利用高维量子状态空间来识别来自背景的信号。在这项研究中,我们采用了该量子机学习算法的开创性,以研究$ e^{+} e^{ - } \ rightarrow zh $在圆形电子 - 波西特隆碰撞器(CEPC)上,这是一个拟议的Higgs工厂,用于研究电子颗粒粒子物质粒子的电子对称性粒子的粒子。在量子计算机模拟器上使用6个量子位,我们优化了QSVM-KERNEL算法,并获得了类似于经典的支持矢量机算法的分类性能。此外,我们已经使用IBM和Origin量子上的量子计算机硬件上的6个Qubits验证了QSVM-KERNEL算法:两者的分类性能都在接近无噪声的量子计算机模拟器。此外,原始量子硬件结果与我们研究中不确定性中的IBM量子硬件相似。我们的研究表明,最先进的量子计算技术可以由粒子物理学(依赖大型实验数据的基本科学的一个分支)来利用。
Machine learning has blossomed in recent decades and has become essential in many fields. It significantly solved some problems in particle physics -- particle reconstruction, event classification, etc. However, it is now time to break the limitation of conventional machine learning with quantum computing. A support-vector machine algorithm with a quantum kernel estimator (QSVM-Kernel) leverages high-dimensional quantum state space to identify a signal from backgrounds. In this study, we have pioneered employing this quantum machine learning algorithm to study the $e^{+}e^{-} \rightarrow ZH$ process at the Circular Electron-Positron Collider (CEPC), a proposed Higgs factory to study electroweak symmetry breaking of particle physics. Using 6 qubits on quantum computer simulators, we optimised the QSVM-Kernel algorithm and obtained a classification performance similar to the classical support-vector machine algorithm. Furthermore, we have validated the QSVM-Kernel algorithm using 6-qubits on quantum computer hardware from both IBM and Origin Quantum: the classification performances of both are approaching noiseless quantum computer simulators. In addition, the Origin Quantum hardware results are similar to the IBM Quantum hardware within the uncertainties in our study. Our study shows that state-of-the-art quantum computing technologies could be utilised by particle physics, a branch of fundamental science that relies on big experimental data.