论文标题

LSAP:重新思考反转忠诚度,gan潜在空间中的知觉和编辑性

LSAP: Rethinking Inversion Fidelity, Perception and Editability in GAN Latent Space

论文作者

Cao, Pu, Yang, Lu, Liu, Dongxu, Liu, Zhiwei, Li, Shan, Song, Qing

论文摘要

随着方法的发展,反转主要分为两个步骤。第一步是图像嵌入,其中编码器或优化过程嵌入图像以获取相应的潜在代码。之后,第二步旨在完善反转和编辑结果,我们将其命名为“结果”。尽管第二步显着提高了忠诚度,但几乎没有变化的知觉和编辑性,深处取决于第一步中获得的反向潜在代码。因此,一个至关重要的问题是在保留重建保真度的同时获得更好的感知和编辑性的潜在代码。在这项工作中,我们首先指出,这两个特征与合成分布的逆代码的对齐程度(或不对准)有关。然后,我们提出了潜在的空间比对反转范式(LSAP),该范式由评估度量和解决方案组成。具体来说,我们介绍了归一化样式空间($ \ Mathcal {s^n} $ space)和$ \ Mathcal {s^n} $ cosine距离(SNCD)来测量反转方法的不对准。由于我们提出的SNCD是可区分的,因此可以在基于编码器的基于编码和优化的嵌入方法中进行优化,以执行均匀的解决方案。在各个领域进行的广泛实验表明,SNCD有效地反映了感知和编辑性,并且我们的对齐范式在两个步骤中都归档了最新的。代码可在https://github.com/caopulan/ganinverter/tree/main/main/configs/lsap上找到。

As the methods evolve, inversion is mainly divided into two steps. The first step is Image Embedding, in which an encoder or optimization process embeds images to get the corresponding latent codes. Afterward, the second step aims to refine the inversion and editing results, which we named Result Refinement. Although the second step significantly improves fidelity, perception and editability are almost unchanged, deeply dependent on inverse latent codes attained in the first step. Therefore, a crucial problem is gaining the latent codes with better perception and editability while retaining the reconstruction fidelity. In this work, we first point out that these two characteristics are related to the degree of alignment (or disalignment) of the inverse codes with the synthetic distribution. Then, we propose Latent Space Alignment Inversion Paradigm (LSAP), which consists of evaluation metric and solution for this problem. Specifically, we introduce Normalized Style Space ($\mathcal{S^N}$ space) and $\mathcal{S^N}$ Cosine Distance (SNCD) to measure disalignment of inversion methods. Since our proposed SNCD is differentiable, it can be optimized in both encoder-based and optimization-based embedding methods to conduct a uniform solution. Extensive experiments in various domains demonstrate that SNCD effectively reflects perception and editability, and our alignment paradigm archives the state-of-the-art in both two steps. Code is available on https://github.com/caopulan/GANInverter/tree/main/configs/lsap.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源