论文标题

音调天空

Phononic Skyrmions

论文作者

Cao, Liyun, Wan, Sheng, Zeng, Yi, Zhu, Yifan, Assouar, Badreddine

论文摘要

具有拓扑稳定的配置的天空源显示出有希望的磁性和光子材料的途径,用于信息处理,因为它们的缺陷免疫和低驱动能量。然而,磁性天空的实际应用严重阻碍了其苛刻的低温环境和复杂的载体。此外,磁性和光子天空的窄带性质会导致数据速率传输较低,从而限制了高速信息处理技术的发展。在这里,我们介绍并演示了语音气息的概念,作为打破上述障碍的新拓扑结构。可以在室温下以任何固体结构(包括芯片尺度结构,具有较高的稳健性和超宽带宽度)在任何固体结构中生产语音气息,这可以为高速和拓扑信息处理技术铺平道路。我们通过实验证明了通过打破弹性波的三维杂交自旋的旋转对称性而形成的语音气旋的存在。独立于频率的旋转构型导致了声音天空音乐的显着的超宽带和可调功能。我们进一步展示了可灵活地移动的语音天空晶格的出色鲁棒性,可抵抗无序,尖角甚至矩形孔的局部缺陷。我们的研究还为通过自旋构型通过弹性的波浪操作和结构化的前所未有的方式打开了一个充满活力的地平线,并为替代语音技术提供了有希望的杠杆,包括量子信息,生物医学测试和波浪工程。

Skyrmions with topologically stable configurations have shown a promising route toward magnetic and photonic materials for information processing due to their defect-immune and low-driven energy. However, the practical application of magnetic skyrmions is severely hindered by their harsh cryogenic environment and complex carriers. In addition, the narrowband nature of magnetic and photonic skyrmions leads to lower data rate transmissions, restricting the development of high-speed information processing technologies. Here, we introduce and demonstrate the concept of phononic skyrmion as new topological structures to break the above barriers. The phononic skyrmion can be produced in any solid structure at room temperature, including chip-scale structures, with high robustness and ultra-bandwidth, which could pave a new path for high-speed and topological information processing technologies. We experimentally demonstrate the existence of phononic skyrmion formed by breaking the rotational symmetry of the three-dimensional hybrid spin of elastic waves. The frequency-independent spin configuration leads to the remarkable ultra-broadband and tunable feature of phononic skyrmions. We further experimentally show the excellent robustness of the flexibly movable phononic skyrmion lattices against local defects of disorder, sharp corners, and even rectangular holes. Our research also opens a vibrant horizon towards an unprecedented way for elastic wave manipulation and structuration by spin configuration, and offers a promising lever for alternative phononic technologies, including quantum information, biomedical testing, and wave engineering.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源