论文标题

纤维结的Ma-QIU指数和中nakanishi指数相等,$ω$ -SOLVISIABLE

The Ma-Qiu index and the Nakanishi index for a fibered knot are equal, and $ω$-solvability

论文作者

Kadokami, Teruhisa

论文摘要

For a knot $K$ in $S^3$, let $G(K)$ be the knot group of $K$, $a(K)$ the Ma-Qiu index (the MQ index, for short), which is the minimal number of normal generators of the commutator subgroup of $G(K)$, and $m(K)$ the Nakanishi index of $K$, which is the minimal number of generators of the Alexander $ k $的模块。我们分别以$ a(g,n)$和$ m(g,n)$表示的一组$ g $及其普通sugroup $ n $的概念概括它们,然后很容易看到$ m(g,n)\ le a(g,n)$。通勤子组是微不足道的。我们的主要定理是,如果$ n $是$ω$ -solvable,那么我们就有$ m(g,n)= a(g,n)$。作为固定的$ k $,我们有$ k $,我们有$ m(k)= a(k)$,我们可以确定$ 9 $ 9 $ 9 $ 9 $ 9 $ 9 $ 9 $ 9。

For a knot $K$ in $S^3$, let $G(K)$ be the knot group of $K$, $a(K)$ the Ma-Qiu index (the MQ index, for short), which is the minimal number of normal generators of the commutator subgroup of $G(K)$, and $m(K)$ the Nakanishi index of $K$, which is the minimal number of generators of the Alexander module of $K$.We generalize the notions for a pair of a group $G$ and its normal sugroup $N$, and we denote them by $a(G, N)$ and $m(G, N)$ respectively.Then it is easy to see $m(G, N)\le a(G, N)$ in general.We also introduce a notion ``$ω$-solvability" for a group that the intersection of all higher commutator subgroups is trivial.Our main theorem is that if $N$ is $ω$-solvable, then we have $m(G, N)=a(G, N)$.As corollaries, for a fibered knot $K$, we have $m(K)=a(K)$, and we could determine the MQ indices of prime knots up to $9$ crossings completely.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源