论文标题
深层的散装散列:半分配无监督的交叉模式检索
Deep Manifold Hashing: A Divide-and-Conquer Approach for Semi-Paired Unsupervised Cross-Modal Retrieval
论文作者
论文摘要
HASHING将项目数据投入二进制代码,由于其储存率低和高查询速度,因此在跨模式检索中显示出了非凡的才能。尽管在某些情况下取得了经验成功,但现有的跨模式散列方法通常不存在带有大量标签信息的数据时跨模态差距跨模式差距。为了避免以分裂和纠纷策略的激励,我们提出了深层的歧管哈希(DMH),这是一种新颖的方法,是将半分配的无监督的交叉模式检索问题划分为三个子问题,并为每个子问题构建一个简单但效率的模型。具体而言,第一个模型是通过基于多种学习的半生数据补充数据来获得模态不变特征的,而第二个模型和第三个模型旨在分别学习哈希码和哈希功能。在三个基准上进行的广泛实验表明,与最先进的完全配对和半生产的无监督的跨模式哈希方法相比,我们DMH的优越性。
Hashing that projects data into binary codes has shown extraordinary talents in cross-modal retrieval due to its low storage usage and high query speed. Despite their empirical success on some scenarios, existing cross-modal hashing methods usually fail to cross modality gap when fully-paired data with plenty of labeled information is nonexistent. To circumvent this drawback, motivated by the Divide-and-Conquer strategy, we propose Deep Manifold Hashing (DMH), a novel method of dividing the problem of semi-paired unsupervised cross-modal retrieval into three sub-problems and building one simple yet efficiency model for each sub-problem. Specifically, the first model is constructed for obtaining modality-invariant features by complementing semi-paired data based on manifold learning, whereas the second model and the third model aim to learn hash codes and hash functions respectively. Extensive experiments on three benchmarks demonstrate the superiority of our DMH compared with the state-of-the-art fully-paired and semi-paired unsupervised cross-modal hashing methods.