论文标题
学会辍学:训练序列VAE的对抗性方法
Learning to Drop Out: An Adversarial Approach to Training Sequence VAEs
论文作者
论文摘要
原则上,将变异自动编码器(VAE)应用于顺序数据提供了一种控制序列生成,操纵和结构化表示学习的方法。但是,训练序列VAE具有挑战性:自回归解码器通常可以解释数据,而无需使用潜在空间,即后置崩溃。为了减轻这种情况,最新的模型通过将随机辍学量应用于解码器输入来削弱强大的解码器。从理论上讲,我们表明,这可以消除解码器输入提供的点式互信息,该信息可以通过使用潜在空间来补偿。然后,我们提出了一种对抗性训练策略,以实现基于信息的随机辍学。与标准文本基准数据集上的均匀辍学相比,我们的目标方法同时提高了序列建模性能和潜在空间中捕获的信息。
In principle, applying variational autoencoders (VAEs) to sequential data offers a method for controlled sequence generation, manipulation, and structured representation learning. However, training sequence VAEs is challenging: autoregressive decoders can often explain the data without utilizing the latent space, known as posterior collapse. To mitigate this, state-of-the-art models weaken the powerful decoder by applying uniformly random dropout to the decoder input. We show theoretically that this removes pointwise mutual information provided by the decoder input, which is compensated for by utilizing the latent space. We then propose an adversarial training strategy to achieve information-based stochastic dropout. Compared to uniform dropout on standard text benchmark datasets, our targeted approach increases both sequence modeling performance and the information captured in the latent space.