论文标题
双曲线空间中一类非均匀椭圆方程的阳性溶液多样性
Multiplicity of positive solutions for a class of nonhomogeneous elliptic equations in the hyperbolic space
论文作者
论文摘要
该论文涉及对该类型问题的积极解决方案 \ begin {equation*} -Δ_ {\ Mathbb {b}^n} u-λu= a(x)| u |^{p -1} \; u \, + \,f \ \,\ \ \; \; \; \ text {in} u \ in H^{1} {(\ Mathbb {b}^{n})}, \ end {equation*} 其中$ \ mathbb {b}^n $表示夸张的空间,$ 1 <p <2^* - 1:= \ frac {n+2} {n-2} {n-2} $,$ \;λ<\;λ<\ frac {(n-1) \ not \ equiv 0 $)是一个非负功能。 l^\ infty(\ mathbb {b}^n)$中的潜在$ a \被认为是严格的阳性,使得$ \ lim_ {d(x,0)\ rightArrow \ rightarrow \ infty} a(x)\ rightArrow 1,$ d(x)$ d(x,x,x,0)$表示地板距离。首先,在假设$ a(x)\ leq 1 $的假设下证明了三种积极解决方案。然后考虑了$ a(x)\ geq 1 $的情况,并证明了两个积极解决方案的存在。在这两种情况下,都假定$μ(\ {x:a(x)\ neq 1 \})> 0。存在的证据结合了变异参数,涉及双曲气泡的关键能量估计。
The paper is concerned with positive solutions to problems of the type \begin{equation*} -Δ_{\mathbb{B}^N} u - λu = a(x) |u|^{p-1}\;u \, + \, f \, \;\;\text{in}\;\mathbb{B}^{N}, \quad u \in H^{1}{(\mathbb{B}^{N})}, \end{equation*} where $\mathbb{B}^N$ denotes the hyperbolic space, $1<p<2^*-1:=\frac{N+2}{N-2}$, $\;λ< \frac{(N-1)^2}{4}$, and $f \in H^{-1}(\mathbb{B}^N)$ ($f \not\equiv 0$) is a non-negative functional. The potential $a\in L^\infty(\mathbb{B}^N)$ is assumed to be strictly positive, such that $\lim_{d(x, 0) \rightarrow \infty} a(x) \rightarrow 1,$ where $d(x, 0)$ denotes the geodesic distance. First, the existence of three positive solutions is proved under the assumption that $a(x) \leq 1$. Then the case $a(x) \geq 1$ is considered, and the existence of two positive solutions is proved. In both cases, it is assumed that $μ( \{ x : a(x) \neq 1\}) > 0.$ Subsequently, we establish the existence of two positive solutions for $a(x) \equiv 1$ and prove asymptotic estimates for positive solutions using barrier-type arguments. The proofs for existence combine variational arguments, key energy estimates involving hyperbolic bubbles.