论文标题

基于机器学习的实验电子束和伽马能分布的分析

Machine learning-based analysis of experimental electron beams and gamma energy distributions

论文作者

Yadav, M., Oruganti, M., Zhang, S., Naranjo, B., Andonian, G., Zhuang, Y., Apsimon, Ö., Welsch, C. P., Rosenzweig, J. B.

论文摘要

高能电子束相互作用与高场系统的相互作用所产生的光子通量,例如在SLAC国家加速器实验室的即将进行的Facet-II实验中,可能会深入了解相互作用点电子束的基本动力学。但是,提取此信息是一个复杂的过程。为了证明如何通过现代方法来应对这一挑战,本文利用了模拟的等离子体韦克赛场加速度衍生的betatron辐射实验和基于高场激光 - 电子的辐射产生的数据来确定重建关键光束和相互作用特性的可靠方法。对于这些测量值,从现在委托的两个高级光谱仪中恢复了发射的200 keV至10 GEV光子能光谱,需要测试多种方法,以从其对入射电子束信息的响应中最终确定管道。在每种情况下,我们都会比较:神经网络的性能,该神经网络通过重复训练来检测数据集之间的模式;最大似然估计(MLE),这是一种统计技术,用于从观察到的数据的分布中确定未知参数;以及将两者结合的混合方法。此外,对于具有高于30 MEV的能量的光子,我们还检查了QR分解的疗效,矩阵分解方法。 Betatron辐射和高能量光子病例证明了混合ML-MLE方法的有效性,而高场电动力学相互作用和低能量光子病例在存在噪声的情况下展示了机器学习(ML)模型的效率。因此,尽管所有方法都有实用性,但ML-MLE混合方法被证明是最概括的。

The photon flux resulting from high-energy electron beam interactions with high field systems, such as in the upcoming FACET-II experiments at SLAC National Accelerator Laboratory, may give deep insight into the electron beam's underlying dynamics at the interaction point. Extraction of this information is an intricate process, however. To demonstrate how to approach this challenge with modern methods, this paper utilizes data from simulated plasma wakefield acceleration-derived betatron radiation experiments and high-field laser-electron-based radiation production to determine reliable methods of reconstructing key beam and interaction properties. For these measurements, recovering the emitted 200 keV to 10 GeV photon energy spectra from two advanced spectrometers now being commissioned requires testing multiple methods to finalize a pipeline from their responses to incident electron beam information. In each case, we compare the performance of: neural networks, which detect patterns between data sets through repeated training; maximum likelihood estimation (MLE), a statistical technique used to determine unknown parameters from the distribution of observed data; and a hybrid approach combining the two. Further, in the case of photons with energies above 30 MeV, we also examine the efficacy of QR decomposition, a matrix decomposition method. The betatron radiation and the high-energy photon cases demonstrate the effectiveness of a hybrid ML-MLE approach, while the high-field electrodynamics interaction and the low-energy photon cases showcased the machine learning (ML) model's efficiency in the presence of noise. As such, while there is utility in all the methods, the ML-MLE hybrid approach proves to be the most generalizable.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源