论文标题
精确 - $ m $ -Majority条款
Exact-$m$-majority terms
论文作者
论文摘要
我们说,如果$ t $评估为$ a $,则diDempotent $ t $是一个准确的-m $ m $ -mjority项,只要元素$ a $在$ t $的参数中完全出现$ a $ a $,并且所有其他参数都是相同的。如果$ m <n $和某些品种$ \ MATHCAL V $具有$ n $ -ary Eckent- $ m $ -M $ -Mojority术语,则$ \ Mathcal V $是一致的模块化。对于$ n $和$ m $的某些值,例如,$ n = 5 $和$ m = 3 $,存在$ n $ -ary-ary-ark eccres-m $ m $ -mjority术语的存在都不意味着一致性发行率,也不意味着一致性。
We say that an idempotent term $t$ is an exact-$m$-majority term if $t$ evaluates to $a$, whenever the element $a$ occurs exactly $m$ times in the arguments of $t$, and all the other arguments are equal. If $m<n$ and some variety $\mathcal V$ has an $n$-ary exact-$m$-majority term, then $\mathcal V$ is congruence modular. For certain values of $n$ and $m$, for example, $n=5$ and $m=3$, the existence of an $n$-ary exact-$m$-majority term neither implies congruence distributivity, nor congruence permutability.