论文标题
使用深度学习去除脑电图中的眼神伪影
Removal of Ocular Artifacts in EEG Using Deep Learning
论文作者
论文摘要
EEG信号是复杂且低频信号。因此,它们很容易受到外部因素的影响。脑电图伪像的去除对于神经科学至关重要,因为伪影对脑电图分析的结果有重大影响。在这些文物中,去除眼伪影是最具挑战性的。在这项研究中,通过开发双向长期记忆(BILSTM)的深度学习(DL)模型来提出一种新型的眼部伪像去除方法。我们创建了一个基准测试数据集,通过组合Eegdenoisenet和DEAP数据集来训练和测试提出的DL模型。我们还通过以各种SNR级别的EOG污染地面真相清洁的EEG信号来增强数据。然后,使用小波同步转换(WSST)获得的高定位时频(TF)系数(WSST)获得了从增强信号提取的特征。我们还将基于WSST的DL模型结果与传统的TF分析(TFA)方法进行比较,即短期傅立叶变换(STFT)和连续小波变换(CWT)以及增强原始信号。最佳的平均MSE值为0.3066,是通过首次基于BilstM的WSST-NET模型获得的。我们的结果表明,与传统的TF和原始信号方法相比,WSST-NET模型显着改善了伪影的性能。此外,提出的EOG去除方法表明,它的表现优于文献中许多基于常规和DL基于DL的眼神伪像去除方法。
EEG signals are complex and low-frequency signals. Therefore, they are easily influenced by external factors. EEG artifact removal is crucial in neuroscience because artifacts have a significant impact on the results of EEG analysis. The removal of ocular artifacts is the most challenging among these artifacts. In this study, a novel ocular artifact removal method is presented by developing bidirectional long-short term memory (BiLSTM)-based deep learning (DL) models. We created a benchmarking dataset to train and test proposed DL models by combining the EEGdenoiseNet and DEAP datasets. We also augmented the data by contaminating ground-truth clean EEG signals with EOG at various SNR levels. The BiLSTM network is then fed to features extracted from augmented signals using highly-localized time-frequency (TF) coefficients obtained by wavelet synchrosqueezed transform (WSST). We also compare the WSST-based DL model results with traditional TF analysis (TFA) methods namely short-time Fourier transformation (STFT) and continuous wavelet transform (CWT) as well as augmented raw signals. The best average MSE value of 0.3066 was obtained by the first time-proposed BiLSTM-based WSST-Net model. Our results demonstrated the WSST-Net model significantly improves artifact removal performance compared to traditional TF and raw signal methods. Also, the proposed EOG removal approach reveals that it outperforms many conventional and DL-based ocular artifact removal methods in the literature.