论文标题
球形对称静态张量的能量量张量的保形对称性
Conformal symmetries of the energy-momentum tensor of spherically symmetric static spacetimes
论文作者
论文摘要
研究了一般球体对称静态空间的能量量张量的保形物质壳。当能量弹药张量为非分化时,发现这些插条的一般形式,并且独立的共形物质碰撞的最大数量为\ emph {15}。在能量量张量的退化情况下,发现这些碰撞具有无限的自由度。在某些退化的能量弹药的子案例中,ricci张量是非脱位的,也就是说,存在非分化的ricci遗传胶粘剂。
Conformal matter collineations of the energy-momentum tensor for a general spherically symmetric static spacetime are studied. The general form of these collineations is found when the energy-momentum tensor is non-degenerate, and the maximum number of independent conformal matter collineations is \emph{fifteen}. In the degenerate case of the energy-momentum tensor it is found that these collineations have infinite degrees of freedom. In some subcases of degenerate energy-momentum, the Ricci tensor is non-degenerate, that is, there exist non-degenerate Ricci inheritance collineations.