论文标题
几乎非负RICCI曲率和属的新定理的新定理
Almost Nonnegative Ricci curvature and new vanishing theorems for genera
论文作者
论文摘要
在几乎非负RICCI曲率和无限基本组下,我们得出了几个消失的定理,其中包括Todd属,$ \ wideHat {a} $ - 属,椭圆形属和维滕属。还证明了几乎非弯曲的Alexandrov空间的Euler特性数字的消失定理。
We derive several vanishing theorems for genera under almost nonnegative Ricci curvature and infinite fundamental group, which includes Todd genus, $\widehat{A}$-genus, elliptic genera and Witten genus. A vanishing theorem of Euler characteristic number for almost nonnegatively curved Alexandrov spaces is also proved.