论文标题

弱霍普夫代数捕获的代数的对称性

Symmetries of algebras captured by actions of weak Hopf algebras

论文作者

Calderón, Fabio, Huang, Hongdi, Wicks, Elizabeth, Won, Robert

论文摘要

在本文中,我们介绍了关于$ \ bbbk $ -Algebras对称的良好结果的概括,其中$ \ bbbk $是一个字段。传统上,对于$ \ bbbk $ -Algebra $ a $,$ \ bbbk $ -Algebra $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $。同样,$ a $的派生的谎言代数捕获了$ a $ a $ a $ a $ a $ a $的代数。在本文中,给定一个类别$ \ MATHCAL {C} $,其对象具有$ \ bbbk $ -linear单型模块类别类别,我们介绍了一个对象$ \ operatorName {sym} _ {\ Mathcal {c}}}(c}}(c}}}(a)$ cape $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a的symmetries。我们的研究涵盖了各种类别,其物体包括群体素,谎言代数和更普遍的同时性弱霍普夫代数。值得注意的是,我们证明,对于一个积极分级的非连接$ \ bbbk $ -Algebra $ a $,其某些对称性自然会在弱的Hopf框架内捕获。

In this paper, we present a generalization of well-established results regarding symmetries of $\Bbbk$-algebras, where $\Bbbk$ is a field. Traditionally, for a $\Bbbk$-algebra $A$, the group $\Bbbk$-algebra automorphisms of $A$ captures the symmetries of $A$ via group actions. Similarly, the Lie algebra of derivations of $A$ captures the symmetries of $A$ via Lie algebra actions. In this paper, given a category $\mathcal{C}$ whose objects possess $\Bbbk$-linear monoidal categories of modules, we introduce an object $\operatorname{Sym}_{\mathcal{C}}(A)$ that captures the symmetries of $A$ via actions of objects in $\mathcal{C}$. Our study encompasses various categories whose objects include groupoids, Lie algebroids, and more generally, cocommutative weak Hopf algebras. Notably, we demonstrate that for a positively graded non-connected $\Bbbk$-algebra $A$, some of its symmetries are naturally captured within the weak Hopf framework.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源